首页> 外文会议>World biomaterials congress >Additive manufacturing of fibrous sub-micron poly(ε-caprolactone) scaffolds for tissue engineering
【24h】

Additive manufacturing of fibrous sub-micron poly(ε-caprolactone) scaffolds for tissue engineering

机译:增材制造用于组织工程的亚微米级聚己内酯纤维支架

获取原文

摘要

Introduction: The field of additive manufacturing (AM) has attracted increasing interest over the last decade, in part for tissue engineering (TE) approaches. In our study we use an emerging type of AM technology, termed Melt Electrospinning Writing (MEW), a process that combines the characteristic benefits of 3D printing and electrospinning. When using an electrohydrodynamic drawing process, thermoplastic melts can be deposited to well defined scaffold structures, even with sub-micron sized fiber diameters (817 ± 165 nm) as we recently observed. Materials and Methods: A custom-built device was used to manufacture scaffolds made of poly(ε-caprolactone) (PCL), a biodegradable polymer with a history of clinical use. In order to investigate the influence of the instrumental parameters, the feeding pressure (0.5-4.0 bar), heating temperature (80-120°C), acceleration voltage (2.0-10.0 kV), spinneret diameter (21 G; 23 G; 25 G; 27 G; 30 G; 33 G), collector distance (1-10 mm) and collector speed (1000-9000 mmmin~(-1)) was systematically varied and optimized. To confirm cell adhesion to the scaffolds, we printed scaffolds directly onto hydrophilized (NCO-sP(EO-stat-PO)coated) glass slides and seeded primary human mesenchymal stromal cells (hMSC) to them afterwards. Results and Discussion: Through the adjustment of instrumental parameters, PCL fibers with diameters ranging from 50 μm to the sub-micron level (817 ± 165 nm) can be deposited to highly uniform scaffolds (figure 1 A, B, C). Thus, MEW can be used to tailor scaffold architecture and to define its specific surface, which is of high interest for degradation or cell-interaction processes. Figure 1: A, B & C: MEW PCL scaffolds with a box structure consisting of 2×50 layers of sub-micron fliaments. D: HMSCs adhered to a scaffold after 4 days in vitro. We observed excellent scaffold adhesion to the microscope slide that could withstand media changes and up to 2 weeks in vitro. The MSCs adhered well on the scaffolds, forming circular structures, even when the box spacing is only 90um (figure 1 D). Further, the hydrophilic coatings of the glass slides not only prevented cell adhesion to the underlying surface, so that specific scaffold cell interactions could be observed. Conclusion: While common AM methods, such as fused deposition modeling, allow a fabrication of fibers in a range of 100 μm microns and more, MEW can print sub-micron fibers with medical grade polymers. In contrast to solution electrospinning, drawing fibers from melts enables manufacturing without the use of often toxic solvents highly interesting for TE or medical approaches.
机译:简介:在过去的十年中,增材制造(AM)领域引起了越来越多的兴趣,部分原因是组织工程(TE)方法。在我们的研究中,我们使用一种新兴的增材制造技术,称为熔体静电纺丝书写(MEW),该工艺结合了3D打印和静电纺丝的独特优势。当使用电动流体力学拉制工艺时,热塑性熔体可以沉积到轮廓分明的支架结构中,即使我们最近观察到的是亚微米尺寸的纤维直径(817±165 nm)也是如此。材料和方法:使用定制设备制造由聚(ε-己内酯)(PCL)(一种具有临床使用历史的可生物降解的聚合物)制成的支架。为了研究仪器参数的影响,进料压力(0.5-4.0 bar),加热温度(80-120°C),加速电压(2.0-10.0 kV),喷丝头直径(21 G; 23 G; 25) G; 27 G; 30 G; 33 G),收集器距离(1-10 mm)和收集器速度(1000-9000 mmmin〜(-1))被系统地改变和优化。为了确认细胞对支架的粘附,我们将支架直接印在亲水化的(NCO-sP(EO-stat-PO)涂层的)载玻片上,然后在其上接种原代人间充质基质细胞(hMSC)。结果与讨论:通过调整仪器参数,可以将直径范围从50μm到亚微米级(817±165 nm)的PCL纤维沉积到高度均匀的支架上(图1 A,B,C)。因此,MEW可用于定制支架结构并定义其比表面,这对于降解或细胞相互作用过程非常重要。图1:A,B和C:MEW PCL支架,其箱形结构由2×50层亚微米级细丝组成。 D:体外4天后,HMSCs粘附在支架上。我们观察到极好的支架与显微镜载玻片的附着力,可以承受培养基的变化,并且在体外长达2周。即使箱子的间距只有90um,MSC也能很好地粘附在支架上,形成圆形结构(图1 D)。此外,载玻片的亲水涂层不仅防止细胞粘附至下层表面,因此可以观察到特定的支架细胞相互作用。结论:虽然常用的AM方法(例如熔融沉积建模)可以制造100μm微米甚至更大范围的纤维,但MEW可以用医用级聚合物印刷亚微米纤维。与溶液电纺丝相反,从熔体中拉制纤维使制造过程中无需使用对TE或医学方法非常感兴趣的通常有毒的溶剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号