首页> 外文会议>World biomaterials congress >Mechanics of adhesion-aggregation-detachment in water filtration
【24h】

Mechanics of adhesion-aggregation-detachment in water filtration

机译:滤水过程中粘附-聚集-分离的力学

获取原文

摘要

Access to drinking water is one of the grand challenge of the 21st century listed by the National Academy of Engineering. The world's water supplies are facing new threats; affordable, advanced technologies could make a difference for millions of people around the world. Lack of clean water is responsible for more deaths in the world than war. Natural cataclysm, manmade disasters, combined with the blooming of polluting industries in the Third World lead to inevitable invasion of pathogens and bacteria in fresh water supplies. It is therefore necessary to understand the mechanism of bacterial adhesion and detachment in water filtration. When bacteria rich water flows through percolated channels in a column packed with sand, the filtering efficiency, a, is influenced by ionic concentration, density and size of collector sand grains, temperature etc. Our previous work shows to be directly proportional to the pseudo Tabor parameters which depends on the range and magnitude of the intersurface force, size and elastic modulus of the particles. The classical colloidal filtration theory provides the standard model generally adopted by the environmental engineering community. One distinct prediction is that a is independent of the flow rate, i.e. no matter how fast the aqueous medium flows past the filter column, the proportion of bacteria adsorped on the sand surface remains constant. Our latest measurement and theoretical model, however, indicate otherwise. Based on typical Derjaguin-Landau-Vervey-Overbeek (DLVO) intersurface forces, the attachment and detachment of cylindrical bacteria depends significantly on the flow rate. By comparing the detachment torque due to the surface attraction and hydrodynamic torque due to the viscous shearing stress, the fate of a particle either staying on or detaching from a collector could be determined. Our new model accounts for the complex interplay of geometry, dimension, and elastic modulus of the particles, the first and second minima and intervening repulsive barrier of the DLVO interaction and the resulting adhesion energy, as well as the influence of ionic strength. The commercial multi-physics software COMSOL is adapted to account for the meridional and azimuthal distribution of adhered bacterial cells on a spherical collector sand grain. The numerical value of is determined from the first principles, and is shown to be consistent with our experimental measurement using a standard packed column test. The new model is capable to explain the underlying physics of water filtration in relation to bacterial adhesion.
机译:获得饮用水是美国国家工程院(National Academy of Engineering)列出的21世纪的重大挑战之一。世界的水供应面临新的威胁。负担得起的先进技术可能对全球数百万人产生影响。缺乏清洁水比战争是造成世界上更多死亡的原因。自然灾害,人为灾难以及第三世界污染产业的兴起导致不可避免地入侵淡水供应中的病原体和细菌。因此,有必要了解滤水过程中细菌粘附和分离的机理。当富含细菌的水流过装有沙子的柱子中的渗透通道时,过滤效率a受离子浓度,集尘器沙粒的密度和大小,温度等影响。这些参数取决于表面间作用力的范围和大小,颗粒的大小和弹性模量。经典的胶体过滤理论提供了环境工程界普遍采用的标准模型。一个不同的预测是,α与流速无关,即,无论水性介质流过滤池的速度有多快,吸附在沙面上的细菌的比例都保持恒定。但是,我们最新的测量和理论模型表明并非如此。基于典型的Derjaguin-Landau-Vervey-Overbeek(DLVO)表面力,圆柱形细菌的附着和分离很大程度上取决于流速。通过比较由于表面吸引引起的分离扭矩和由于粘性剪切应力引起的流体动力扭矩,可以确定留在收集器上或从收集器上分离的颗粒的命运。我们的新模型考虑了粒子的几何形状,尺寸和弹性模量之间复杂的相互作用,DLVO相互作用的第一和第二极小值以及中间的排斥势垒以及由此产生的粘附能,以及离子强度的影响。商业多物理场软件COMSOL适用于解决粘附的细菌细胞在球形收集器沙粒上的子午和方位分布。的数值是根据第一个原理确定的,并显示与使用标准填充柱测试的实验测量结果一致。新模型能够解释与细菌粘附有关的水过滤的基本原理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号