首页> 外文会议>World biomaterials congress >Extending the application of plasma electrolytic oxide coatings to novel low-rigidity beta-type titanium alloys: applications to load-bearing orthopaedic implants
【24h】

Extending the application of plasma electrolytic oxide coatings to novel low-rigidity beta-type titanium alloys: applications to load-bearing orthopaedic implants

机译:将等离子体电解氧化物涂层的应用扩展到新型低刚度β型钛合金:在承重骨科植入物中的应用

获取原文

摘要

Introduction: The low modulus of a load-bearing orthopaedic implant material together with its contiguous interface with the surrounding bone tissue is key to ensure a uniform load distribution and stress transfer from the implant to the bone, thus minimising stress shielding and aseptic loosening. Surface engineering of endosseous Ti implants at the nano-/micro-scale has been shown to enhance bone formation, and encourage rapid osteointegration and biomechanical stability. Plasma Electrolytic Oxidation (PEO) is currently applied to dental implants made up of commercially pure α-Ti to produce bioactive TiO_2-based coatings, e.g. Ticer~® (ZL Microdent), TiUnite~® (Nobel Biocare) and BioSpark™ (Keystone Dental). Compared to commercial α- and (α+β)type Ti alloys, β-type Ti alloys have a modulus closer to that of natural bone, and thus, potentially offer a lower stress shielding effect. Also, among the three polymorphs of TiO_2 (anatase, rutile and brookite), anatase has been shown to enable rapid precipitation of HA in SBF; hence, it is desirable to maximize the surface anatase content. This study explores the possibility of extending the application of PEO to low-modulus β-type Ti-based alloys, while maintaining similar cellular activity as commercial implant materials. Materials and Methods: PEO was conducted in a 10 kW 50 Hz Keronite™ rig using the current density of 20 A-dm~(-2) and 0.05 M Na_3PO_4 electrolyte. The electrolyte temperature was kept at 20±2°C. Coatings were produced on α-Ti, (α+β)-Ti6Al4V, near β-Ti13Nb13Zr and β-Ti45Nb after 2,5 and 30 min. The physicochemical properties of the coatings were studied using TEM, SEM, EDX, XRD, Raman, XPS, GD-OES. DSA, BET and white light interferometry. Cell response was evaluated in vitro using foetal human osteoblasts by assessing cell attachment and distribution (immunofluorescence). metabolic activity (alamarBlue), matrix formation (immunoblotting) and mineralization (Osteolmage™). Results and Discussion: All materials showed the formation of anatase-rich, rough TiO_2-based coatings exhibiting a multidimensional porous structure-ideal for cell-coating interdigitation. PEO coating physicochemical variation was governed by the formation of microplasma discharges, which were responsible for the simultaneous outgrowth of the oxide film containing additional alloying elements (Al, V, Nb and Zr), and deposition of the electrolyte ions (Na and P). Two mechanisms were proposed, by which the amorphous oxide was produced constantly during the PEO process, rendering the coatings anatase-rich, Fig. 1. The formation of more powerful sparks at longer dwell times altered the macro-scale morphology of the coatings, and raised the local surface phosphorus content through coating displacement and buildup. Coating roughness, thickness and substrate mass also increased with dwell time for all materials. In vitro biological evaluation of the coatings showed similar osteoblast metabolic activity, proliferation and differentiation on all materials. The anatase-rich content of the coatings did not influence the cell response, as the top surface in contact with the cells appeared to be largely amorphous, Fig. 1. Increased cell mineralization was observed at longer dwell times, which may be attributed to enhanced surface phosphorus content, Fig. 2. Cell interdigitation into the porous coatings was also observed, which could presage osteointegration in vivo, and future in vivo experiments are required to determine applicability to load-bearing orthopaedic implants, Fig. 2. Conclusion: PEO was shown capable of producing anatase-rich, rough TiO_2-based coatings with interconnected porosity on α-, (α+β)-, near β- and β-type Ti-based alloys, Fig. 3. The surface physicochemical properties were found to depend on PEO processing time and substrate material. The study of cell attachment, metabolic activity, matrix formation and mineralization on all materials suggested that PEO application can be extended to modify the surface of low-modulus β-type Ti-based alloys offering a lower stress shielding effect, without impeding osteoblast response in vitro.
机译:简介:负重矫形植入物材料的低模量以及与周围骨组织的邻接界面是确保均匀的载荷分布和从植入物到骨骼的应力转移的关键,从而最大程度地减少了应力屏蔽和无菌性松动。已显示纳米/微米尺度的骨内钛植入物的表面工程可增强骨形成,并促进快速的骨整合和生物力学稳定性。目前,等离子电解氧化(PEO)应用于由商业上纯的α-Ti制成的牙科植入物,以生产基于生物活性的TiO_2的涂层,例如Ticer®(ZL Microdent),TiUnite®(Nobel Biocare)和BioSpark™(Keystone Dental)。与市售的α型和(α+β)型Ti合金相比,β型Ti合金的模量更接近天然骨的模量,因此潜在地提供了较低的应力屏蔽效果。此外,在TiO_2的三种多晶型物中(锐钛矿,金红石和板钛矿),锐钛矿已显示出能够在SBF中快速沉淀HA。因此,期望最大化表面锐钛矿含量。这项研究探索了将PEO的应用扩展到低模量β型Ti基合金的可能性,同时保持了与商业植入材料相似的细胞活性。材料和方法:PEO在10 kW 50 Hz Keronite™装置中使用20 A-dm〜(-2)的电流密度和0.05 M Na_3PO_4电解质进行。电解液温度保持在20±2℃。在2.5和30分钟后,在α-Ti,(α+β)-Ti6Al4V,β-Ti13Nb13Zr和β-Ti45Nb附近生成涂层。使用TEM,SEM,EDX,XRD,拉曼,XPS,GD-OES研究了涂层的物理化学性质。 DSA,BET和白光干涉仪。通过评估细胞附着和分布(免疫荧光),使用胎儿人类成骨细胞在体外评估细胞反应。代谢活性(alamarBlue),基质形成(免疫印迹)和矿化作用(Osteolmage™)。结果与讨论:所有材料均显示出富含锐钛矿的,粗糙的TiO_2基涂层的形成,该涂层具有多维多孔结构,非常适合细胞涂层的交叉。 PEO涂层的物理化学变化受微等离子体放电形成的控制,这些放电同时导致包含其他合金元素(Al,V,Nb和Zr)的氧化膜的向外生长,以及电解质离子(Na和P)的沉积。提出了两种机理,通过这种机理在PEO过程中不断产生无定形氧化物,从而使涂层富含锐钛矿,如图1所示。在更长的停留时间下形成更强大的火花会改变涂层的宏观形貌,并且通过涂层置换和堆积提高了局部表面磷含量。对于所有材料,涂层的粗糙度,厚度和基材质量也会随停留时间的增加而增加。涂层的体外生物学评估显示,在所有材料上成骨细胞的代谢活性,增殖和分化都相似。涂层中富含锐钛矿的涂层含量不影响细胞反应,因为与细胞接触的顶表面似乎基本上是无定形的,图1。在更长的停留时间观察到细胞矿化增加,这可能归因于增强的表面磷含量,图2。还观察到细胞进入多孔涂层的相互交错,这可能预示着体内的骨整合,还需要进一步的体内实验来确定对承重骨科植入物的适用性,图2。结论:PEO是图3显示了能够在α-,(α+β)-,近β-和β-型Ti-基合金上产生具有互连孔隙的富锐钛矿型,粗糙的TiO_2基涂层的表面,图3的表面物理化学性质取决于PEO的处理时间和基材。对所有材料的细胞附着,代谢活性,基质形成和矿化的研究表明,可以扩展PEO的应用来修饰低模量β型Ti基合金的表面,从而提供较低的应力屏蔽作用,而不会阻碍成骨细胞的反应。体外。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号