首页> 外文会议>World biomaterials congress >Electrospun polyurethane and hydrogel composite scaffolds as biomechanical mimics for aortic valve tissue engineering
【24h】

Electrospun polyurethane and hydrogel composite scaffolds as biomechanical mimics for aortic valve tissue engineering

机译:电纺聚氨酯和水凝胶复合支架作为主动脉瓣组织工程的生物力学模拟物

获取原文

摘要

Introduction: Most tissues are composites of several different kinds of extracellular matrix (ECM) components including collagens, elastin, and proteoglycans. Unique composition and organization of ECM allows tissues to serve the various biomechanical needs of the body. Heart valves, in particular, operate in an intense mechanical environment, opening and closing billions of times over a lifetime. The non-linear, viscoelastic, and anisotropic mechanical properties of valve tissue enable the efficient flow of blood through the heart for delivery to the rest of the body. But heart valves can become diseased, resulting in disorganized ECM and mechanical dysfunctions. Tissue engineered replacement valves must match the mechanical properties of native valves to replicate function and appropriately guide the behavior of cells seeded in the scaffold. We are using a composite scaffold of electrospun biodegradable polyurethane (BPUR) and polyethylene glycol) (PEG) hydrogel to mimic the heterogeneous valve ECM and mechanical properties. Materials and Methods: PEG was functionalized with an enzymatically degradable peptide sequence, GGGPQGIWGQGK (PQ), to make PEG-PQ-PEG diacrylate. RGDS was conjugated to PEG for a cell adhesion ligand. Poly(ether ester urethane) urea with 50% hard segment was electrospun and collected on a rotating mandrel to produce anisotropic mechanical behavior. The electrospun mat was encapsulated inside PEG-PQ-PEG hydrogel with 2 mM PEG-RGDS and 15x106 valve interstitial cells (VICs)/ml. Mechanical properties of the scaffold were measured in uniaxial tension, and immunohistochemistry demonstrated phenotype of encapsulated cells. Results and Discussion: The synthetic BPUR/PEG-PQ-PEG scaffold has many of the mechanical properties present in native valve tissue. The fibrous nature of the electrospun BPUR mimics ECM components collagen and elastin and the fiber alignment replicates the anisotropic behavior of valve tissue. Most synthetic materials exhibit a linear stress-strain response, which is different from the non-linear stress-strain curve of native valves (Figure 1 A), especially in the 10-30% physiological strain range. Figure 1: (A) Uniaxial tensile testing of aortic valve tissue in radial direction. Stress vs. strain plot is nonlinear, with low-modulus toe region followed by transition to stiffer collagen region; (B) 1st and (C) 20th cyclic tensile loading of BPUR/PEG-PQ-PEG composite scaffold Bilinear Preconditioning the BPUR in tension altered the microphase morphology such that a bilinear stress-strain response was observed upon subsequent tensile loading of the composite scaffold (Figure 1B-C shows the 1 st and 20th cycles). The PEG hydrogel component was a bioactive cell carrier in which encapsulated VICs showed healthy phenotype in 3D. Figure 2: Cross-section of top side of composite scaffold. VICs encapsulated in PEG-PQ-PEG hydrogel, which is between dashed lines; BPUR is UV auto-fluorescent (blue) in lower right corner The cells sensed the stiffness and alignment of the electrospun fibers, without strong aSMA expression which would have been indicative of a diseased state. The next step will be to assess scaffold remodeling with cell secreted ECM after long term culture under cyclic tension. Conclusion: The composite BPUR/PEG-PEG-PQ scaffold is a step towards a tissue engineered valve that mimics the structural and functional heterogeneity of native valves.
机译:简介:大多数组织是几种不同类型的细胞外基质(ECM)成分的复合物,包括胶原蛋白,弹性蛋白和蛋白聚糖。 ECM的独特组成和组织使组织能够满足人体的各种生物力学需求。尤其是心脏瓣膜在激烈的机械环境中运行,一生中打开和关闭数十亿次。瓣膜组织的非线性,粘弹性和各向异性的机械特性使血液能够有效地流过心脏,以输送到身体的其他部位。但是心脏瓣膜可能会生病,导致混乱的ECM和机械功能障碍。组织工程化的置换瓣膜必须与天然瓣膜的机械特性相匹配,以复制功能并适当地指导植入支架中的细胞的行为。我们正在使用电纺生物可降解聚氨酯(BPUR)和聚乙二醇(PEG)水凝胶的复合支架来模拟异质阀ECM和机械性能。材料和方法:用可酶降解的肽序列GGGPQGIWGQGK(PQ)对PEG进行功能化,以制备PEG-PQ-PEG二丙烯酸酯。 RGDS与PEG结合在一起形成细胞粘附配体。将具有50%硬链段的聚(醚酯氨基甲酸酯)尿素进行电纺丝并收集在旋转的心轴上,以产生各向异性的机械性能。将电纺垫以2 mM PEG-RGDS和15x106瓣膜间质细胞(VIC)/ ml封装在PEG-PQ-PEG水凝胶中。在单轴张力下测量支架的机械性能,并且免疫组织化学证明了包囊细胞的表型。结果与讨论:合成的BPUR / PEG-PQ-PEG支架具有天然瓣膜组织中存在的许多机械性能。电纺BPUR的纤维性质模仿了ECM成分的胶原蛋白和弹性蛋白,并且纤维排列复制了瓣膜组织的各向异性行为。大多数合成材料表现出线性应力-应变响应,这与天然瓣膜的非线性应力-应变曲线不同(图1 A),尤其是在10%至30%的生理应变范围内。图1:(A)主动脉瓣组织在径向方向上的单轴拉伸测试。应力-应变图是非线性的,趾部区域模量低,随后过渡到较硬的胶原区域。 BPUR / PEG-PQ-PEG复合支架的(B)第1和(C)20循环拉伸载荷双线性预处理BPUR处于拉伸状态改变了微相形态,从而在复合支架的后续拉伸载荷下观察到了双线性应力-应变响应(图1B-C显示了第一个和第20个周期)。 PEG水凝胶成分是一种生物活性细胞载体,其中包裹的VIC在3D模式下显示出健康的表型。图2:复合支架顶侧的横截面。封装在虚线之间的PEG-PQ-PEG水凝胶中的VIC; BPUR是右下角的紫外线自发荧光(蓝色)。细胞感觉到电纺纤维的刚度和排列,没有强烈的aSMA表达,这可能是疾病的征兆。下一步将是在循环张力下长期培养后,评估细胞分泌的ECM对支架的重塑。结论:BPUR / PEG-PEG-PQ复合支架是向组织工程瓣膜迈出的一步,该瓣膜模仿天然瓣膜的结构和功能异质性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号