首页> 外文会议>AIAA SciTech forum;AIAA Aerospace Sciences Meeting >Active particles production by pulsed nanosecond discharge in ambient air. Quenching of electronically excited states of nitrogen by O_2 molecules and O(~3P) atoms
【24h】

Active particles production by pulsed nanosecond discharge in ambient air. Quenching of electronically excited states of nitrogen by O_2 molecules and O(~3P) atoms

机译:在环境空气中通过脉冲纳秒放电产生活性颗粒。 O_2分子和O(〜3P)原子对氮的电子激发态的猝灭

获取原文

摘要

The results of a numerical study of kinetic processes initiated by pulsed nanosecond discharge in atmospheric-pressure air are presented. The calculations of temporal dynamics of electron concentration, density of atomic oxygen, vibrational distribution function of nitrogen molecules, and gas temperature agree with the experimental data. It was shown that quenching of electronically excited states of nitrogen N_2(B~3Π_g), N_2(C~3Π_u), N_2(a'~1Σ_u~-) by oxygen molecules leads to the dissociation of O_2. This conclusion is based on the comparison of calculated dynamics of atomic oxygen in air, excited by pulsed nanosecond discharge, with experimental data. In air plasma at high dissociation degree of oxygen molecules, relaxation of electronic energy of atoms and molecules in reactions with O atoms becomes extremely important. Active production of NO molecules and fast gas heating in the discharge plasma due to the quenching of electronically excited N_2(B~3Π_g, C_3Π~_u, a'~1Σ_u~-) molecules by oxygen atoms should be noted here. Owing to the high O atoms density, negative ions are efficiently destroyed in the discharge afterglow. As a result, the decay of plasma in the afterglow is determined by electron-ion and ion-ion recombination, and the electron density in the region of high O -atoms density remains relatively high between the pulses. This is the reason why the next pulse does not lead to the streamer formation, but instead the Townsend mechanism of the discharge is initiated. An increase of vibrational temperature of nitrogen molecules at the periphery of plasma channel at time delay t = 1 - 30 μs after the discharge was obtained. This is due to the intense gas heating and as a result, gas-dynamic expansion of a hot gas channel. Vibrationally excited N_2(v) molecules produced near the discharge axis moves from the axial region to the periphery. Consequently, at the periphery the vibrational temperature of nitrogen molecules is increased.
机译:提出了由大气压空气中的脉冲纳秒放电引发的动力学过程的数值研究结果。电子浓度,原子氧的密度,氮分子的振动分布函数和气体温度的时间动态计算与实验数据吻合。结果表明,氧分子对氮N_2(B〜3Π_g),N_2(C〜3Π_u),N_2(a'〜1Σ_u〜-)的电子激发态的猝灭导致O_2的解离。该结论基于对脉冲纳秒放电激发的空气中原子氧的计算动力学与实验数据的比较。在氧分子的高解离度的空气等离子体中,弛豫原子和分子与O原子反应的电子能变得非常重要。这里应该注意由于氧原子对电子激发的N_2(B〜3Π_g,C_3Π_u,a'〜1Σ_u〜-)分子的猝灭而导致的NO分子的主动生成和在放电等离子体中的快速气体加热。由于高的O原子密度,负离子在放电余辉中被有效地破坏。结果,在余辉中等离子体的衰减由电子-离子和离子-离子复合确定,并且在高O-原子密度的区域中的电子密度在脉冲之间保持相对较高。这就是为什么下一个脉冲不导致形成拖缆,而是启动放电的汤森德机制的原因。在放电后的时间延迟t = 1-30μs时,等离子通道周围的氮分子的振动温度增加。这是由于强烈的气体加热以及热气体通道的气体动力膨胀所致。在放电轴附近产生的振动激发的N_2(v)分子从轴向区域移动到外围。因此,在外围,氮分子的振动温度升高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号