首页> 外文会议>AIAA SciTech Forum;AIAA aerospace sciences meeting >Hybrid Spectral Difference/Embedded MPWENO Method for Conservation Laws
【24h】

Hybrid Spectral Difference/Embedded MPWENO Method for Conservation Laws

机译:守恒律的混合谱差/嵌入式MPWENO方法

获取原文

摘要

Recently, interest has been increasing towards applying high-order methods to engineering applications with complex geometries. As a result, a family of discontinuous high-order methods, such as Discontinuous Galerkin (DG), Spectral Volume (SV) and Spectral Difference (SD) methods, are under active development. These methods provide spectral-like results and are highly parallelizable due to local solution reconstruction within each cell. But, these methods suffer from Gibbs phenomenon near discontinuities. Artificial viscosity and sub-cell shock capturing method have been developed circumventing this problem. As an attempt towards applying a discontinuous high-order method for large scale engineering applications involving discontinuities in flows with complex geometries, a hybrid SD/embedded FV method is introduced by Choi. In this hybrid approach, structured finite volume cells are embedded in hexahedral elements containing discontinuity and high-order shock capturing scheme is used to overcome Gibbs phenomenon. In smooth flow regions away from discontinuities, the spectral difference method is employed. In this paper, the hybrid SD/embedded FV method is further investigated with a suite of test cases. In addition, the idea of embedding structured FV elements employed in the hybrid SD/embedded FV method is further extended to unstructured hexahedral grid and is introduced as the embedded structured element (ESE) framework for high-order method using unstructured hexahedral grid. The embedded structured element framework is work-in-progress, but it shows promising results for applying high-order method for complex geometries. The error analysis and a suite of 1D and 2D test cases are presented further investigating the hybrid SD/embedded FV method using structured grid. One example employing the ESE framework is also included and discussed.
机译:近来,对于将高阶方法应用于具有复杂几何形状的工程应用的兴趣日益增加。结果,一系列不连续的高阶方法,例如不连续Galerkin(DG),光谱体积(SV)和光谱差(SD)方法,正在积极开发中。这些方法提供了类似光谱的结果,并且由于每个单元中的局部溶液重建而具有高度可并行性。但是,这些方法都遭受不连续点附近的吉布斯现象的困扰。已经开发出人工粘度和亚细胞冲击捕获方法来解决这个问题。为了尝试将不连续高阶方法用于涉及复杂几何形状的流动不连续性的大规模工程应用中,Choi引入了混合SD /嵌入式FV方法。在这种混合方法中,将结构化的有限体积单元嵌入包含不连续性的六面体单元中,并使用高阶震荡捕获方案来克服吉布斯现象。在远离不连续点的平滑流动区域中,采用谱差法。在本文中,将通过一组测试用例进一步研究混合SD /嵌入式FV方法。另外,将在混合SD /嵌入式FV方法中使用的嵌入结构化FV元素的想法进一步扩展到非结构化六面体网格,并作为使用非结构化六面体网格的高阶方法的嵌入式结构化元素(ESE)框架引入。嵌入式结构化元素框架尚在开发中,但是对于将高阶方法应用于复杂几何图形,它显示出了可喜的结果。给出了误差分析以及一维和二维测试用例套件,进一步研究了使用结构化网格的混合SD /嵌入式FV方法。还包括并讨论了采用ESE框架的一个示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号