首页> 外文会议>SPWLA Annual Logging Symposium;Society of Petrophysicists and Well Log Analysts, inc >Challenges of Determining Petrophysical Reservoir Characterizations In Complex Low Porosity Fractured Carbonates – Integrating Pore Geometry,Deterministic Petrophysical Rock Types and Saturation Height Models Yields Positive Results – PEMEX Case Study Offshore Mexico
【24h】

Challenges of Determining Petrophysical Reservoir Characterizations In Complex Low Porosity Fractured Carbonates – Integrating Pore Geometry,Deterministic Petrophysical Rock Types and Saturation Height Models Yields Positive Results – PEMEX Case Study Offshore Mexico

机译:在复杂的低孔隙度裂缝性碳酸盐岩中确定岩石物理储层特征的挑战–整合孔隙几何形状,确定性岩石物理岩石类型和饱和高度模型可产生积极成果–墨西哥近海PEMEX案例研究

获取原文

摘要

Offshore Mexico Cretaceous and Jurassic carbonatesare typically brecciated, dolomitized, low porosityfractured reservoirs. These reservoirs are veryimportant resources in Mexico and are petrophysicallyextremely difficult to interpret using common analysismethods and traditional data.Reservoir porosity sometimes exceeds 10 percent; butoften reservoir pay zones are less than 7 percent due tothe different types of intrinsic pore geometries. “Archiem” may vary from 1.3 to greater than 4. Resistivities innon-productive and productive sections can be verysimilar due to the low porosities. Nuclear magneticresonance (NMR) logs are considered questionable inmany areas due to the low porosity and otherconditions. Compounding the challenges withinterpretation, this region of the Gulf of Mexico isconsidered a HPHT (high pressure and hightemperature) environment.Core-log integration requires a working knowledge ofhow the borehole tools respond to lithology, reservoirfluids and the limits of vertical resolution and depth ofinvestigation.These challenges require PEMEX petrophysicists tounderstand geology, pore geometry, mineralogy,diagenesis and stress information before developing anintegrated porosity model. Delivering a simplelithology interpretation is a starting point, but thecomplexity of these reservoirs requires a rock-basedintegrated lithology model that is calibrated to a coredescription, lab based mineralogy measurements andpetrographic analysis. Permeability predictions are nolonger simple linear regressions, but should include aminimum of three components (lithology, porosity andstress) and are often extended to advanced statisticalmethods. Log based saturations for reservoir models arerarely based on simple electrical rock properties andconstant log parameters. Saturation determination hasevolved into considering various pore geometry models(1-4 systems), complex wettability, capillary propertiesand integrated deterministic petrophysical rock types.Results are confirmed by using customized saturationheight models.Results from three fields show uncertainty is reducedby using deterministic Petrophysical Rock Typing(PRT) methods and that the key to success isdetermining if there is a relationship between initialwater saturation obtained from wellbore analysis andpredicted pore throat size using various techniques.The method requires access to high quality wellboredata and pore geometry based special core analysis(high pressure mercury injection porosimetry, thinsections,mineralogy, petrographic analysis, electricalrock properties and wettability data). Neverthelesssome wells do not have core data available. In thatsituation the use of cuttings provides key reservoircalibration data.Through the development of these petrophysicalcharacterizations, several traditional methods have beenmodified and used on several fields. These “newpractical methods” will be highlighted and presented.PEMEX is using these methods to identify value addedopportunities in exploitation, exploration andproduction.
机译:墨西哥近海白垩纪和侏罗纪碳酸盐 通常为角砾状,白云石化,低孔隙度 裂缝性储层。这些水库非常 墨西哥的重要资源,并具有岩石物理意义 使用通用分析很难解释 方法和传统数据。 储层孔隙度有时会超过10%。但 由于 不同类型的固有孔几何形状。 “档案馆 m”的范围可能从1.3到大于4。 非生产和生产部门可能非常 由于孔隙率低,因此类似。核磁 共振(NMR)日志被认为是可疑的 由于孔隙率低等原因,许多地区 情况。使挑战更加复杂 解释,墨西哥湾的这个地区是 被认为是高温高压 温度)环境。 核心日志集成需要以下方面的工作知识: 钻孔工具如何响应岩性,储层 流体以及垂直分辨率和深度限制 调查。 这些挑战要求PEMEX的岩石物理学家 了解地质学,孔隙几何学,矿物学, 发育之前的成岩和压力信息 综合孔隙度模型。提供一个简单的 岩性解释是一个起点,但是 这些储层的复杂性需要基于岩石的 校准到岩心的集成岩性模型 描述,基于实验室的矿物学测量和 岩石学分析。渗透率预测不是 较长的简单线性回归,但应包括 至少三个组成部分(岩性,孔隙度和 压力),并且经常扩展到高级统计 方法。储层模型基于对数的饱和度为 很少基于简单的电岩石性质和 常数日志参数。饱和度测定有 演变成考虑各种孔隙几何模型 (1-4个体系),复杂的润湿性,毛细管性能 和综合确定性岩石物理类型。 通过使用自定义饱和度确认结果 高度模型。 来自三个领域的结果表明不确定性降低了 通过确定性的岩石物理岩石分型 (PRT)方法,成功的关键是 确定初始值与初始值之间是否存在关系 通过井眼分析获得的水饱和度 使用各种技术预测孔喉的大小。 该方法需要使用高质量的井眼 基于数据和孔隙几何的特殊岩心分析 (高压汞注入孔隙率法,薄片, 矿物学,岩石学分析,电气 岩石特性和润湿性数据)。尽管如此 有些井没有可用的核心数据。在那里面 情况钻屑的使用提供了关键储层 校准数据。 通过这些岩石物理的发展 表征,几种传统方法已经 修改并用于多个领域。这些“新 实用方法”。 PEMEX正在使用这些方法来识别增值 开发,勘探和开发的机会 生产。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号