首页> 外文会议>ASME international conference on ocean, offshore and arctic engineering >WAVE-CURRENT INTERACTIONS IN A MARINE CURRENT TURBINE USING ANSYS FLUENT CFD
【24h】

WAVE-CURRENT INTERACTIONS IN A MARINE CURRENT TURBINE USING ANSYS FLUENT CFD

机译:使用ANSYS FLUENT CFD在海流涡轮中进行波流相互作用

获取原文

摘要

This paper presents the results of the study on the wave-current interactions of an idealized full scale marine current turbine (MCT). A multi-phase flow model is used for simulation of three cases: still water and two different wave heights. The Standard κ-ω turbulence model is chosen based on the stability of the pressure and velocity plots upstream and downstream the turbine rotor plane. The three cases are used in the present study to compare the effects of wave height and current velocity on the turbine rotor. The velocity, and pressures on the turbine blades are computed for each case using ANSYS FLUENT CFD Software. The thrust, torque, and power in the MCT are calculated using the results obtained from the CFD simulation. The turbine rotor blades are drafted in 3D using SolidWorks by extruding cross sections of a 43.2 m diameter turbine blade published by the National Renewable Energy Laboratory (NREL). Tetrahedral mesh elements are used to represent the multiphase fluid domain and rotor blades in ANSYS ICEM CFD due to its simplicity and speed of computation. The ANSYS FLUENT simulation is set up to run air and water phases in the domain, while the rotor blade is suspended in the fluid domain, such that there is 20 m of water in front and 100 m behind the plane of rotation. The effects of varying wave heights on the thrust, torque, and power are presented based on the tip speed ratios. The power generated by the turbine rotor from the wave cases is found to be higher than those for the still water case, at lower current velocities. However, at current velocities higher than 2.00 m/s, the power generated from the still water case is higher than the wave cases. At lower tip speed ratios, the thrust on the turbine, subjected to wave conditions, is lower than that for the still water condition. At higher tip speed ratios, the thrust on the turbine, under wave conditions, is higher than that for the still water condition. The torque decreases exponentially with increases in the tip speed ratio for all three cases, but the torque remains nearly constant with increases in wave height. The results provide detailed information which would be valuable in the design and operation of marine current turbines in wave environments.
机译:本文介绍了理想化的全尺寸船用水轮机(MCT)的波流相互作用的研究结果。多相流模型用于三种情况的模拟:静水和两种不同的波高。基于涡轮转子平面上游和下游的压力和速度图的稳定性,选择标准κ-ω湍流模型。在本研究中使用这三种情况来比较波高和当前速度对涡轮转子的影响。使用ANSYS FLUENT CFD软件针对每种情况计算涡轮叶片上的速度和压力。 MCT中的推力,扭矩和功率使用从CFD仿真获得的结果进行计算。通过挤压由国家可再生能源实验室(NREL)发布的直径为43.2 m的涡轮叶片的横截面,使用SolidWorks以3D方式绘制涡轮转子叶片。由于其简单性和计算速度,四面体网格元素用于表示ANSYS ICEM CFD中的多相流域和转子叶片。 ANSYS FLUENT模拟程序设置为在域中运行空气和水相,而转子叶片则悬浮在流体域中,因此旋转平面前部有20 m水,后部有100 m水。基于叶尖速度比,显示了变化的波高对推力,扭矩和功率的影响。在较低的电流速度下,涡轮机转子从波浪壳体产生的功率要高于静止水壳体的功率。但是,在高于2.00 m / s的当前速度下,静止水箱所产生的功率要高于波浪箱所产生的功率。在较低的叶尖速比下,涡轮在波浪条件下的推力要比静止水条件下的推力低。在较高的叶尖速比下,在波浪条件下,涡轮上的推力要比静止水条件下的推力高。在所有这三种情况下,转矩均随着叶尖速比的增加而呈指数下降,但随着波高的增加,转矩几乎保持恒定。结果提供了详细的信息,这些信息对于波浪环境中的海流涡轮机的设计和运行非常有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号