首页> 外文会议>International Battery Seminar and Exhibit >Silicon-Graphite Slurry and High-Loading Electrode Process Development
【24h】

Silicon-Graphite Slurry and High-Loading Electrode Process Development

机译:硅石墨浆料和高负荷电极工艺开发

获取原文

摘要

Silicon has been in discussion for over a decade as a drop-in replacement for graphite in lithium-ion battery anodes. Incorporating silicon into the anode would allow storing more lithium in less space and thus have a higher energy density. A successful integration of silicon would help meet the transportation requirements set by the U.S. Department of Energy (DOE) for Hybrid Electric Vehicles, Plug-in Hybrid Electric Vehicles, and Electric Vehicles for gravimetric and volumetric energy capabilities. Early work using silicon showed the promising advantages, but the issues of particle fracturing due to particle expansion and the unknowns of the solid electrolyte interface (SEI) layer has stilled the adoption of silicon for commercial batteries. However, fabricating a uniform and high integrity electrode using silicon and silicon-graphite blends to perform studies to better understand the silicon particle expansion and SEI layer is not a trivial task. In this work, various silicon-graphite-binder blends, mixing methods, and coating settings have been examined with an emphasis in developing a practical silicon-graphite electrode with >3 mAh/cm~2 that can aid in the further development of silicon based anode systems and could be embraced by industry. The strategy to achieve a high integrity, high loading silicon-graphite anode involved testing silicon-graphite exploratory slurries using various mixing methods and pilot-scale coating equipment in Argonne's Cell Analysis, Modeling, and Prototyping (CAMP) Facility to identify processing issues. The initial work was also used was to verify the scalability of the processing/coating developments. The culmination of the work resulted in a homogeneous ~4 mAh/cm~2 silicon-graphite electrode containing 15 wt.% nano-silicon, 73 wt.% graphite, 2 wt.% carbon black, and 10 wt.% Li-PAA (lithiated poly acrylic acid) binder while having high integrity with the ability to survive a 3 mm diameter pin bend test. Silicon-graphite electrodes are available in the CAMP Facility Electrode Library for the battery research community, to help enable further development of an industrial accepted lithium-ion battery containing a silicon based anode. This presentation will discuss the significant challenges faced with the slurry mixing and coating of silicon-graphite electrodes and the encouraging discoveries used to produce a high quality silicon-graphite electrode. Acknowledgements Support from Peter Faguy and David Howell of the U.S. Department of Energy's Office of Vehicle Technologies Program is gratefully acknowledged. This work was performed under the auspices of the US Department of Energy, Office of Vehicle Technologies, under Contract no. DE-AC02-06CH11357.
机译:硅已经被讨论了十多年,以替代锂离子电池阳极中的石墨。将硅掺入阳极将允许在较小的空间中存储更多的锂,因此具有较高的能量密度。硅的成功集成将有助于满足美国能源部(DOE)为混合动力汽车,插电式混合动力汽车和电动汽车设定的重量和体积能源能力的运输要求。早期使用硅的工作显示出了令人鼓舞的优势,但是由于颗粒膨胀和固体电解质界面(SEI)层的未知性导致的颗粒破裂问题仍然使硅在商业电池中的应用仍然存在。然而,使用硅和硅-石墨混合物制造均匀且高完整性的电极以进行研究以更好地理解硅颗粒的膨胀和SEI层并不是一件容易的事。在这项工作中,已经研究了各种硅-石墨-粘合剂混合物,混合方法和涂层设置,重点是开发出实用的> 3 mAh / cm〜2的硅-石墨电极,该电极可帮助进一步开发硅基阳极系统,可能会被工业界接受。实现高完整性,高负荷的硅石墨阳极的策略包括在Argonne的电池分析,建模和原型(CAMP)设施中使用各种混合方法和中试规模的涂覆设备测试硅石墨探索性浆料,以识别工艺问题。最初的工作还用于验证加工/涂层开发的可扩展性。该工作的最终结果是形成了均匀的〜4 mAh / cm〜2的硅-石墨电极,其中包含15 wt。%的纳米硅,73 wt。%的石墨,2 wt。%的炭黑和10 wt。%的Li-PAA (锂化聚丙烯酸)粘合剂,同时具有很高的完整性,并且能够承受直径3 mm的针弯曲试验。可在CAMP设施电极库中为电池研究社区提供硅石墨电极,以帮助进一步开发包含硅基阳极的工业认可的锂离子电池。本演讲将讨论浆料混合和硅石墨电极涂层所面临的重大挑战,以及用于生产高质量硅石墨电极的令人鼓舞的发现。致谢感谢美国能源部车辆技术计划办公室的Peter Faguy和David Howell的支持。这项工作是在美国能源部汽车技术办公室的主持下进行的,合同号为。 DE-AC02-06CH11357。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号