首页> 外文会议>Conference on ultrafast phenomena and nanophotonics >Cooperative atomic motion probed by ultrafast transmission electron diffraction
【24h】

Cooperative atomic motion probed by ultrafast transmission electron diffraction

机译:超快透射电子衍射探测的协同原子运动

获取原文

摘要

In numerous solids exhibiting broken symmetry ground states, changes in electronic (spin) structure are accompanied by structural changes. Femtosecond time-resolved techniques recently contributed many important insights into the origin of their ground states by tracking dynamics of the electronic subsystem with femtosecond light pulses. Moreover, several studies of structural dynamics in systems with periodic lattice modulation (PLD) were performed. Since intensities of the super-lattice diffraction peaks are in the first approximation proportional to the square of the PLD amplitude, their temporal dynamics provides access to cooperative atomic motion. This process takes place on a fraction of a period of the corresponding lattice vibration (typically 100 fs timescale). However, since energy transfer from the excited electronic system to the lattice takes place on a comparable timescale, contribution of the incoherent lattice motion on diffraction intensities has to be taken into account. Furthermore we demonstrate an ultrafast transmission electron diffraction set-up, where relative changes in individual diffraction peaks of less than 1% can be studied. Here we show, that by simultaneously tracking the dynamics of intensities in super-lattice peaks, lattice peaks and in the incoherent background over multiple diffraction orders the two processes can be effectively disentangled.
机译:在呈现破碎的对称地位的许多固体中,电子(旋转)结构的变化伴随着结构性变化。 Femtosecond Departved Technes最近通过跟踪电子子系统与飞秒光脉冲的动态贡献了许多重要的见解。此外,进行了几次对具有周期性晶格调制(PLD)的结构动力学的研究。由于超晶格衍射峰的强度在与PLD幅度的平方成比例的第一近似,因此它们的时间动态提供对协作原子运动的访问。该过程在相应的格子振动的一段时间内进行(通常为100 fs时间尺度)。然而,由于从激发电子系统到晶格的能量转移,因此在可比较的时间内进行,因此必须考虑到非相干晶格运动对衍射强度的贡献。此外,我们证明了超快透射电子衍射设置,其中可以研究小于1%的单个衍射峰的相对变化。在这里,我们展示了,通过同时跟踪超格峰中的强度动态,格子峰值和在多个衍射令上方的不连贯的背景下,这两个过程可以有效地解开。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号