首页> 外文会议>International Bhurban Conference on Applied Sciences and Technology >Numerical study on the optimum design of explosively formed projectile
【24h】

Numerical study on the optimum design of explosively formed projectile

机译:爆炸性射弹最佳设计的数值研究

获取原文

摘要

Explosively Formed Projectile (EFP) is a self-forging shape charged structure having very high penetration ability compared to conventional kinetic energy projectile. The penetration capability of an EFP is strongly dependent on various design parameters. The present research is an effort to study the effect of liner thickness, explosive type and length to diameter ratio of charge (L/D) on the formation of EFP and its effectiveness is studied in terms of penetration subjected to ballistic impact and penetration of Rolled Homogeneous Armor (RHA) target. The study is carried out by performing a number of simulations by using explicit finite element (FE) hydrocode ANSYS/Autodyn. Under the explosive loading the liner collapses severally without breakage and forms a high-speed projectile. In all the simulations, the explosive is modeled using Euler processor to best predict the large material flow and venting of explosive gases whereas the liner and casing are numerically discretized using Lagrange processor. The interaction of explosive gases with casing and liner is modeled through Euler-Lagrange coupling technique available in ANSYS/Autodyn. It was originated that for same EFP design only by varying the liner thickness from 6 to 4 mm gives an increased velocity of the developed high-speed projectile without losing structural integrity. The developed high-speed projectile velocity is further enhanced by using more powerful charge types having a higher velocity of detonation (VOD). Three different charge types are analyzed for EFP performance and it was found that HMX based charge gives a significant increase in projectile velocity and henceforth penetration in RHA target. Finally, by increasing the length-diameter ratio of EFP system from 0.75-1.1 either the high-speed projectile or the long stretchy projectile can be formed. The field tests were conducted for selected EFP configurations for validation of calculated results. It was found through simulations that by decreasing the thickness of liner the 40 % increase in EFP velocity and 31 % increase in penetration depth in RHA can be achieved. In addition to this using HMX based charges for length-charge diameter ratio of 1.0, the 21 % increase in EFP velocity and 35 % increase in penetration depth in RHA was estimated. This research provides EFP designers to get an optimum high-speed projectile by incorporating different geometrical parameters.
机译:爆炸性地形成射弹(EFP)是一种自锻造形状,与传统的动能射弹相比具有非常高的穿透能力。 EFP的渗透能力强烈依赖于各种设计参数。本研究旨在研究衬里厚度,爆炸式和长度与电荷直径比(L / D)对EFP的形成的影响,并且在渗透的渗透率和轧制渗透的渗透方面研究了其有效性均匀盔甲(RHA)目标。通过使用显式有限元(FE)SOUDCOGE ANSYS / AUTODYN来执行许多模拟来执行该研究。在爆炸性装载下,衬里的衬垫分别折叠,不会破损,形成高速射弹。在所有模拟中,利用欧拉处理器建模爆炸物以最佳地预测爆炸性气体的大型材料流量,而衬垫和壳体使用拉格朗日处理器在数值上离散化。爆炸气体与壳体和衬里的相互作用通过ANSYS / AUTODYN中提供的Euler-Lagrange耦合技术进行建模。它起源于相同的EFP设计,仅通过改变6到4毫米的衬里厚度,可以增加发达的高速射弹的速度,而不会失去结构完整性。通过使用具有较高爆炸速度(VOD)的强力电荷类型,进一步增强了发育的高速射弹速度。分析了三种不同的电荷类型的EFP性能,发现基于HMX的电荷可以显着增加射弹速度和RHA目标的渗透率。最后,通过提高EFP系统的长度直径比0.75-1.1可以形成高速射弹或长弹性射弹。为选定的EFP配置进行了现场测试,以验证计算结果。通过模拟发现,通过降低衬里的厚度,可以实现40℃的EFP速度增加,并且可以实现rha中的渗透深度的31%。除了使用基于HMX的长度电荷直径比为1.0的电荷,估计了rha中的21℃的EFP速度和35℃的渗透深度增加。本研究提供了EFP设计人员,通过合并不同的几何参数来获得最佳的高速射弹。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号