首页> 外文会议>International topical meeting on nuclear plant instrumentation, control, and human-machine interface technologies >RHEOLOGICAL ANALYSIS AND VIBRATIONAL SPECTROSCOPY FOR ENHANCED CONDITION MONITORING AND LIFETIME PREDITION OF CABLE MATERIALS
【24h】

RHEOLOGICAL ANALYSIS AND VIBRATIONAL SPECTROSCOPY FOR ENHANCED CONDITION MONITORING AND LIFETIME PREDITION OF CABLE MATERIALS

机译:电缆材料的状态监测和寿命预测的流变分析和振动光谱

获取原文

摘要

Cables deployed within nuclear power plants must be able to maintain their functionality throughout very long lifetimes even with high levels of cumulative radiation exposure. With requirements for qualified lifetimes being 60 years or more, large acceleration factors are often required for Arrhenius lifetime simulations. When comparing test data from accelerated aging studies to actual in-service conditions, it is important to ensure that the fundamental mechanisms of changes induced in the materials during the accelerated aging conditions are the same as those that would be experienced in service. Traditional room temperature mechanical characterization as well as rheological analysis, thermal analysis, and vibrational spectroscopy are used to characterize various cable materials under different thermal and radiation histories. From the combined data, clear mechanisms of the physical and chemical changes in each cable materials as well as relative rates of change can be determined. For thermoplastic compounds melt or solution viscosity measurements can provide rheological information about changes in polymer structure. These traditional viscosity measurements, however, are not possible on crosslinked materials. Dynamic Thermal Mechanical Analysis is be used to present a detailed picture of the structural changes which take place as a function of material as these materials are exposed to radiation and subsequent thermal aging. Changes in temperature dependent dynamic modulus and complex viscosity in various materials show that crosslinking is the dominating mechanism of chemical change in the cable materials studied.
机译:即使在高水平的累积辐射暴露下,部署在核电厂内的电缆也必须能够在很长的使用寿命内保持其功能。对于合格的使用寿命为60年或以上的要求,Arrhenius寿命仿真通常需要较大的加速因子。在将加速老化研究与实际使用条件下的测试数据进行比较时,重要的是要确保加速老化条件下材料引起的变化的基本机理与使用中会遇到的相同。传统的室温机械表征以及流变学分析,热分析和振动光谱学被用来表征在不同热和辐射历史下的各种电缆材料。从合并的数据中,可以确定每种电缆材料的物理和化学变化以及相对变化率的清晰机制。对于热塑性化合物,熔体或溶液的粘度测量可以提供有关聚合物结构变化的流变信息。但是,这些传统的粘度测量不适用于交联材料。动态热力学分析用于显示结构变化的详细情况,这些变化是材料的功能,因为这些材料会受到辐射和随后的热老化的影响。各种材料中随温度变化的动态模量和复数粘度的变化表明,交联是所研究电缆材料化学变化的主要机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号