首页> 外文会议>Conference on UV/Optical/IR space telescopes and instruments: Innovative technologies and concepts >Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor
【24h】

Technology Development for the Advanced Technology Large Aperture Space Telescope (ATLAST) as a Candidate Large UV-Optical-Infrared (LUVOIR) Surveyor

机译:技术开发为先进技术大孔径空间望远镜(Atlast)作为候选大型UV光 - 红外(Luvoir)测量师

获取原文

摘要

The Advanced Technology Large Aperture Space Telescope (ATLAST) team has identified five key technologies to enable candidate architectures for the future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, Enduring Quests, Daring Visions. The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technologies are: internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescopes, detectors, and mirror coatings. Selected technology performance goals include: 1×10~(-10) raw contrast at an inner working angle of 35 milli-arcseconds, wavefront error stability on the order of 10 pm RMS per wavefront control step, autonomous on-board sensing & control, and zero-read-noise single-photon detectors spanning the exoplanet science bandpass between 400 nm and 1.8 μm. Development of these technologies will provide significant advances over current and planned observatories in terms of sensitivity, angular resolution, stability, and high-contrast imaging. The science goals of ATLAST are presented and flowed down to top-level telescope and instrument performance requirements in the context of a reference architecture: a 10-meter-class, segmented aperture telescope operating at room temperature (~290 K) at the sun-Earth Lagrange-2 point. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current Technology Readiness Level (TRL) - thus identifying the current technology gap. We report on current, planned, or recommended efforts to develop each technology to TRL 5.
机译:先进的技术大型孔径空间望远镜(Atlast)团队已经确定了五种关键技术,以使未来的大型紫外线/光/红外线/红外线(Luvoir)空间天文台能够设想为NASA天体物理学30年的路线图,持久的任务,大胆愿景。 Atlast的科学目标从早期的星系和明星形成的过程中的广泛的天体物理问题与地球上的生命的形成有助于形成,将一般天体物理学与可居住的外产的直接成像和光谱合并。关键技术是:内部调节件,星座(或外部透镜),超稳定的大孔径望远镜,探测器和镜像涂层。所选技术性能目标包括:1×10〜(-10)原始对比,在35毫克的内部工作角度为35毫克 - 弧秒,波前误差稳定性在每波前控制步骤10 PM RMS的顺序,自动车载传感和控制,和零读噪声单光子探测器,跨越400nm和1.8μm之间的外延科学带通。这些技术的开发将在灵敏度,角度分辨率,稳定性和高对比度成像方面提供对当前和计划的观察者的重大进步。在参考架构的背景下提出和流动到顶层望远镜和仪器性能要求的地塔斯特的科学目标:一个10米的级,在阳光下在室温(〜290 k)上运行的一流的孔径望远镜 - 地球拉格朗日-2点。对于每个技术领域,我们定义了所需能力,当前最先进的性能和当前技术准备水平(TRL)的最佳估计值 - 从而识别当前的技术差距。我们报告了将每种技术开发到TRL 5的现行,计划或建议的努力。

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号