首页> 外文会议>International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing >Simple adaptive progressive edge-growth construction of LDPC codes for close(r)-to-optimal sensing in pulsed ToF
【24h】

Simple adaptive progressive edge-growth construction of LDPC codes for close(r)-to-optimal sensing in pulsed ToF

机译:简单的自适应渐进式边缘 - 增长的LDPC码,用于关闭(R) - 脉冲TOF中的最佳感测

获取原文

摘要

In pulsed Time-of-Flight (ToF) systems the pulse width establishes a tradeoff between depth resolution and range. Ideally, one would wish to emit a pulse that is as short as allowed by the hardware, while keeping the depth range arbitrarily large, being able to sense more than one return per pixel. This suggests the use of compressive sensing (CS) as sensing paradigm, in order to exploit the sparsity of the light echo, s. Unfortunately, the best CS sensing matrices are dense matrices of random nature, thus expensive to generate and store when the signal dimensionality n (desired range over desired depth resolution) is high. The computational cost of the recovery also becomes prohibitive for large n. Additionally, dense matrices lead to measurements with poor SNR if the ratio s/n is too low or, conversely, require prohibitive amplitudes of the nonzero components. Deterministically-generated low-density parity-check (LDPC) sensing matrices can leverage these problems, but perform worse than random matrices if the density is too low compared to the sparsity. In this paper we present a simple method for deterministic construction of LDPC sensing matrices that builds upon progressive edge-growth (PEG) methods and integrates adaptiveness, that is, each new LDPC code is generated using information on the sparse signal captured by the previously-generated codes. Sensing matrices constructed via our adaptive PEG (APEG) algorithm exhibit superior sparse recovery performance than their PEG counterparts. If the density is appropriately adjusted (still low), APEG-LDPC matrices outperform classical CS random matrices.
机译:在脉冲飞行时间(TOF)系统中,脉冲宽度在深度分辨率和范围之间建立权衡。理想情况下,人们希望发出与硬件允许的脉冲短,同时保持深度范围是任意大的,能够感测每个像素的多个返回。这表明使用压缩感测(CS)作为传感范例,以利用光回波的稀疏性。遗憾的是,最好的CS感测矩阵是随机性质的密集矩阵,从而昂贵地生成和存储当信号量度n(期望的深度分辨率上的所需范围)高。恢复的计算成本也变得越大。另外,如果比率S / N太低或相反地,则致密矩阵导致SNR差的测量值需要欠氮成分的禁止幅度。确定性地产生的低密度奇偶校验(LDPC)感测矩阵可以利用这些问题,但如果密度与稀疏性相比,密度太低,则比随机矩阵更差。在本文中,我们介绍了一种简单的方法,用于确定渐进式边缘增长(PEG)方法的LDPC感测矩阵的确定性结构,并集成了适应性,即,使用预先捕获的稀疏信号的信息生成每个新的LDPC代码。生成的代码。经由我们的自适应PEG(APEG)算法构造的感测矩阵表现出比其PEG对应物更高的稀疏恢复性能。如果密度适当调整(仍然很低),则APEG-LDPC矩阵优于经典CS随机矩阵。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号