首页> 外文会议>AIAA/ASME/SAE/ASEE joint propulsion conference;AIAA propulsion and energy forum >Generalized Scaling Technique for the Solution of the Vortical Wave Eigenfunction Equation
【24h】

Generalized Scaling Technique for the Solution of the Vortical Wave Eigenfunction Equation

机译:涡旋波本征函数方程解的广义尺度技术

获取原文

摘要

The description of the unsteady wave motion in an acoustic chamber is relevant to a multitude of aerospace applications such as rockets, gas turbines, scramjets, and preburners. Several related problems arise in the development and propagation of vorticoacoustic boundary layers when considering the effects of arbitrary injection profiles on acoustic wave motions. The reverse problems correspond to arbitrary suction profiles associated with chambers that are intended for filtration or particle separation. Two wave solutions can be developed for such flow regimes: The first being a relatively straightforward potential flow motion for the compressible, irrotational acoustic wave, while the other leads to a complex eigenfunction solution for the rotational, incompressible vortical wave. Unlike the acoustic wave equation, the eigenfunction equation does not readily lend itself to straightforward analysis. Its exact solutions are tractable only for simple base flow profiles and geometries. Moreover, the inherently stiff nature of the eigenfunction equation makes a numeric solution to the resulting problem a non-trivial task. Previous work has tackled the solution of this class of problems by solving equations that are derived for specific geometric configurations and injection conditions. The resulting approximations have relied heavily on multiple-scales and WKB approximations, as these have the ability to accommodate both linear and nonlinear scales. The present work provides a generalized formulation to the rotational wave eigenfunction equation assuming arbitrary coordinate systems and mean flow profiles. The ensuing solutions are obtained using an extension of multiple-scales theory, namely, the Generalized Scaling Technique (GST). The GST method extends the applicability of multiple scales by determining the problem's underlying scales through analysis rather than conjecture. The problem is also approximated using the WKB expansion method. In doing so, we not only confirm our GST results, but also supply sufficient evidence to re-establish the WKB method as a special case of the GST framework. Finally, our solution is validated numerically using a spectral Chebyshev collocation approach.
机译:声学室内非稳态波动的描述与多种航空航天应用有关,例如火箭,燃气轮机,超燃冲压发动机和预燃器。当考虑任意注入剖面对声波运动的影响时,在涡流边界层的发展和传播中会出现一些相关问题。相反的问题对应于与旨在进行过滤或颗粒分离的腔室相关的任意吸力分布。可以针对这种流动状态开发两种波解:第一种是可压缩的,不可旋转的声波的相对简单的潜在流动运动,而另一种是旋转的,不可压缩的涡旋波的复杂本征函数解。与声波方程不同,本征函数方程不容易进行直接分析。它的精确解决方案仅适用于简单的基本流量剖面和几何形状。此外,本征函数方程固有的刚性特性使对所得问题的数值求解成为一项不平凡的任务。先前的工作通过求解针对特定几何构型和注入条件得出的方程式,解决了此类问题的解决方案。所得的近似值在很大程度上依赖于多尺度和WKB近似,因为它们具有适应线性和非线性尺度的能力。本工作为旋转波本征函数方程提供了一个通用的公式,假定了任意坐标系和平均流量剖面。随后的解决方案是使用多尺度理论的扩展即广义缩放技术(GST)获得的。 GST方法通过分析而不是推测来确定问题的潜在尺度,从而扩展了多个尺度的适用范围。使用WKB扩展方法也可以大致解决该问题。这样,我们不仅可以确认我们的商品及服务税(GST)结果,而且还提供了足够的证据来重新建立WKB方法,将其作为商品及服务税(GST)框架的特例。最后,我们使用频谱Chebyshev搭配方法对我们的解决方案进行了数值验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号