首页> 外文会议>AIAA SciTech forum;Aerospace sciences meeting >Computational Modeling of the Flow Environment in Inductively Coupled Plasma Jet Facilities
【24h】

Computational Modeling of the Flow Environment in Inductively Coupled Plasma Jet Facilities

机译:电感耦合等离子流设施中流动环境的计算模型

获取原文

摘要

The goals of this work are to evaluate under what conditions the flow in an inductively coupled plasma jet facility is in thermochemical equilibrium and to evaluate the accuracy of mapping subsonic ground based testing conditions to hypersonic flight. To accomplish this we use the US3D code in these different regimes, ensuring that identical thermal and chemical models are consistently applied to each case and accurate comparisons are drawn. Our simulations indicate that at lower operating pressures (2000 Pa), the flow upstream of the test article is in chemical nonequilibrium, while at higher pressures (10,000 Pa) the flow is very close to chemical equilibrium. The chemical nonequilibrium found at the low pressure condition is caused by molecular species diffusing towards the plasma jet core at a rate higher than the dissociation rate. At both high and low pressures, the flow in the jet upstream of the test article remains in thermal equilibrium, however, the flow within the boundary layer is found to be in thermal nonequilibrium. We find that for cases with perfect air, we are able to match the stagnation point heatflux of a subsonic flow over an axisymmetric probe with a hypersonic flow to within 7%. In a case where a spherical geometry is used in both subsonic and hypersonic cases, we are able to match the stagnation point heat flux within 1%. This indicates that the probe geometry may be important when considering which hypersonic conditions the ground based testing results represent.
机译:这项工作的目的是评估在什么条件下感应耦合等离子体射流装置中的流动处于热化学平衡状态,并评估将基于亚音速地面的测试条件映射到高音速飞行的准确性。为此,我们在不同的情况下使用US3D代码,以确保将相同的热模型和化学模型一致地应用于每种情况,并进行精确的比较。我们的模拟表明,在较低的工作压力(2000 Pa)下,测试制品的上游流体处于化学不平衡状态,而在较高的压力(10,000 Pa)下,该流体非常接近化学平衡状态。在低压条件下发现的化学不平衡是由于分子种类以高于解离速率的速率向等离子体射流核扩散的结果。在高压和低压下,测试制品上游的射流都保持热平衡,但是,发现边界层内的流处于热不平衡状态。我们发现,对于具有理想空气的情况,我们能够将轴对称探针上的亚音速流与高音速流的驻点热通量匹配到7%之内。在亚音速和高音速情况下都使用球形几何形状的情况下,我们能够将停滞点热通量匹配在1%以内。这表明,在考虑地面测试结果所代表的高超声速条件时,探头的几何形状可能很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号