首页> 外文会议>ASME international conference on ocean, offshore and arctic engineering >OPTIMIZATION OF MEG INJECTION AND REGENERATION SYSTEM FOR OFFSHORE GAS FIELDS USING MULTIPHASE SIMULATION AND SYNERGISTIC INHIBITION STRATEGIES
【24h】

OPTIMIZATION OF MEG INJECTION AND REGENERATION SYSTEM FOR OFFSHORE GAS FIELDS USING MULTIPHASE SIMULATION AND SYNERGISTIC INHIBITION STRATEGIES

机译:应用多相模拟和协同抑制策略优化海上气田梅格气注入再生系统

获取原文

摘要

Industry has been relying on the injection of considerable amount of Mono Ethylene Glycol (MEG) for hydrate inhibition in petroleum production systems, especially in offshore gas wells. However current design of MEG injection and regeneration systems is used to be over-sized as it consider the worst operation conditions such as shut-in pressure, ambient seawater temperature, and maximum water production rate. Recently, multiphase simulation tools have been widely used to estimate the temperature and pressure profiles of offshore flowlines for both steady-state and transient operations, which would be useful to better estimate the worst operation conditions of offshore flowlines. Moreover, recent research results on synergistic inhibition suggest that MEG injection rate might be reduced below the required concentration by adding small amount of Kinetic Hydrate Inhibitors (KHI). Here we carried out an experiment to validate the effect of using synergistic inhibition with MEG and KHI on the design of MEG injection and regeneration systems for offshore gas wells. The studied concentration range of MEG is up to 30 wt% and PVCap concentration is between 0.1 and 1.0 wt%. Synthetic natural gas composed of C1 90 mol%, C2 6 mol%, C3 3 mol%, and nC4 1 mol% is used for all experiments. High pressure autoclave system mounted with overhead stirrer is used with constant cooling method. Furthermore, multiphase simulation tool, OLGA, is used to simulate the operation conditions of offshore gas fields. The amount of condensed water and temperature-pressure profiles during extended shut-in period are calculated for 10 km offshore flowlines. The obtained results suggest that the injection rate of MEG can be reduced about 50% by adopting synergistic inhibition and multiphase flow simulation, which would reduce the CAPEX and OPEX for MEG Moreover the reduced size of MEG regeneration unit would improve weight and space management on platform topside.
机译:工业上一直依赖注入大量的单乙二醇(MEG)来抑制石油生产系统中的水合物,特别是在海上天然气井中。但是,MEG注入和再生系统的当前设计过大,因为它考虑了最坏的运行条件,例如关闭压力,周围海水温度和最大产水率。最近,多相模拟工具已被广泛用于估算稳态和瞬态作业的海上输油管线的温度和压力曲线,这将有助于更好地估算海上输油管线的最恶劣运行条件。此外,有关协同抑制的最新研究结果表明,通过添加少量的动力学水合物抑制剂(KHI),可以将MEG注射速率降低至所需浓度以下。在这里,我们进行了一项实验,以验证使用MEG和KHI协同抑制作用对海上气井MEG注入和再生系统设计的影响。研究的MEG的浓度范围高达30 wt%,PVCap的浓度在0.1和1.0 wt%之间。所有实验均使用由90%(摩尔)的C1、6%(摩尔)的C2、3%(摩尔)的C3和1%(摩尔)的nC4组成的合成天然气。装有顶置式搅拌器的高压釜系统采用恒定冷却方法。此外,多相模拟工具OLGA用于模拟海上气田的运行状况。对于10 km的海上输油管,应计算出延长的关闭期间的冷凝水量和温度-压力曲线。所得结果表明,通过协同抑制和多相流模拟,可将MEG的注入率降低约50%,这将减少MEG的CAPEX和OPEX。此外,减小MEG再生装置的尺寸将改善平台的重量和空间管理顶面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号