首页> 外文会议>ASME international conference on ocean, offshore and arctic engineering >LATCHING CONTROL OF A FLOATING OSCILLATING WATER COLUMN WAVE ENERGY CONVERTER IN IRREGULAR WAVES
【24h】

LATCHING CONTROL OF A FLOATING OSCILLATING WATER COLUMN WAVE ENERGY CONVERTER IN IRREGULAR WAVES

机译:不规则波中浮动振荡水柱波能量转换器的锁存控制

获取原文

摘要

The paper concerns the phase control by latching of a floating oscillating-water-column (OWC) wave energy converter of spar-buoy type in irregular random waves. The device is equipped with a two-position fast-acting valve in series with the turbine. The instantaneous rotational speed of the turbine is controlled through the power electronics according to a power law relating the electromagnetic torque on the generator rotor to the rotational speed, an algorithm whose adequacy had been numerically tested in earlier papers. Two alternative strategies (1 and 2) for the latching/unlatching timings are investigated. Strategy 1 is based on the knowledge of the zero-crossings of the excitation force on the floater-tube set. This is difficult to implement in practice, since the excitation force can neither be measured directly nor predicted. Strategy 2 uses as input easily measurable physical variables: air pressure in the chamber and turbine rotational speed. Both strategies are investigated by numerical simulation based on a time-domain analysis of a spar-buoy OWC equipped with a self-rectifying radial-flow air turbine of biradial type. Air compressibility in the chamber plays an important role and was modelled as isen-tropic in a fully non-linear way. Numerical results show that significant gains up to about 28% are achievable through strategy 1, as compared with no phase control. Strategy 2, while being much easier to implement in practice, was found to yield more modest gains (up to about 15%).
机译:本文涉及通过锁定不规则随机波中的浮标型浮水振荡水柱(OWC)波能量转换器进行相位控制。该设备配备了一个与涡轮机串联的二位快速作用阀。涡轮的瞬时转速通过电力电子设备根据功率定律进行控制,该定律将发电机转子上的电磁转矩与转速相关联,该算法的适当性已在较早的论文中进行了数值测试。研究了两种用于锁存/解锁时序的替代策略(1和2)。策略1是基于浮子管组上的激励力过零的知识。由于激励力既不能直接测量也不能预测,因此在实践中很难实现。策略2使用易于测量的物理变量作为输入:腔室内的空气压力和涡轮转速。两种策略均通过基于时域分析的数值模拟研究,该时域分析是对配备有双径向型自校正径向流空气涡轮机的翼形浮标OWC进行时域分析的。腔室中的空气可压缩性起着重要作用,并且以完全非线性的方式建模为等熵的。数值结果表明,与无相位控制相比,通过策略1可以实现高达28%的显着增益。策略2在实践中更容易实施,但收益却更为适中(最多约15%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号