首页> 外文会议>Annual International Conference of the IEEE Engineering in Medicine and Biology Society >Investigating Ensemble Learning and Classifier Generalization in a Hybrid, Passive Brain-Computer Interface for Assessing Cognitive Workload*
【24h】

Investigating Ensemble Learning and Classifier Generalization in a Hybrid, Passive Brain-Computer Interface for Assessing Cognitive Workload*

机译:调查混合,被动脑电脑接口中的集合学习和分类器泛化,用于评估认知工作量*

获取原文

摘要

Hybrid, passive brain-computer (h/pBCI) interfaces have received much attention in regards to measuring various mental states. A high classification rate of operator workload state is necessary in order to be able to enhance operator performance. Physiological measures have been used with machine learning algorithms to classify workload state, however, these measures are hypothesized to suffer from inherent nonstationarity. To attain a more generalizable classifier, a prior solution has been to use a multi-day learning paradigm to train classifier models. In earlier work, we have shown that increasing the number of unique data sessions used to form a learning set can improve the accuracy of classifying mental workload where improved generalizability is partly attributable to the multi-day paradigm. To further investigate methods that produce more generalizable classifiers, we look to ensemble learning. Here we implement ensemble learning to increase accuracies, reduce variance, and leverage theoretical performance of the ensemble as compared to observed to make inference about generalization. An adaptive boosting method (AdaBoost) is used to train a "base learning algorithm" multiple times, adaptively adjusting to errors and forming a vote out of the resulting hypotheses using three different base learning algorithms: an artificial neural network (ANN), a support vector machine (SVM), and linear discriminant analysis (LDA). We observed that the ensemble converged on theoretical performance with respect to error and variance only when the training sets were formed using the multi-day paradigm. These results indicate that ensemble learning approaches can be used in examples of pBCI such as those designed here, but they are also affected by theorized nonstationarity in physiological response. The observation of ensemble convergence on theoretical performance may be used to make inference about generalizability when simple accuracy of detection can be misleading.
机译:混合型的,被动的脑 - 机(H / pBCI)接口备受关注的关于测量各种精神状态。操作人员的工作量状态的高识别率是必要的,以便能够提高操作员的表现。生理措施已使用机器学习算法进行分类的工作负载状态,但是,这些措施都是假设从内在不稳定性受到影响。为了获得更一般化的分类,现有的解决方案是使用多天的学习模式来训练分类模型。在早期的工作中,我们已经表明,增加用于形成学习一套独特的数据会话的数量可以提高心理负荷,其中改进普遍性是部分归因于多天范式分类的准确性。为了进一步研究产生更概括的分类方法,我们来看看集成学习。在这里,我们实现集成学习来提高精度,减少偏差和乐团的杠杆理论性能相比,观察到做出概括推理。自适应增强方法(AdaBoost算法)用于训练“基本学习算法”多次,适应性地调整到错误,并形成一个表决出使用三种不同的基学习算法所得到的假设的:一个人工神经网络(ANN),支撑向量机(SVM),和线性判别分析(LDA)。我们观察到,整体融合的理论性能相对于错误,只有当使用多天的范式形成训练集变化。这些结果表明,集成学习方法可以在诸如那些在这里设计的pBCI实施例来使用,但它们也受到理论化非平稳性在生理反应。在理论性能合奏收敛的观察可能被用来制造推断约普遍性情况下的检测精度简单,可以产生误导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号