首页> 外文会议>International conference on nuclear engineering >EULERIAN TWO-PHASE FLOW MODELING OF STEAM DIRECT CONTACT CONDENSATION FOR THE FUKUSHIMA ACCIDENT INVESTIGATION
【24h】

EULERIAN TWO-PHASE FLOW MODELING OF STEAM DIRECT CONTACT CONDENSATION FOR THE FUKUSHIMA ACCIDENT INVESTIGATION

机译:FUKUSHIMA事故调查的蒸汽直接接触冷凝的EULERIAN两相​​流模型

获取原文

摘要

Steam condensation is characterized by a relatively large interfacial region between gas and liquid which, in computational fluid dynamic (CFD) analyses, allows the creation of a discretized domain whose average cell size is larger than the interface itself. For this reason generally one fluid model with interface tracking (e.g. volume of fluid method, VOF) is employed for its solution in CFD, since the solution of the interface requires a reasonable amount of cells, reducing the modeling efforts. However, for some particular condensation applications, requiring the computation of long transients or the steam ejected through a large number of holes, one-fluid model becomes computationally too expensive for providing engineering information, and a two-fluid model (i.e. Eulerian two-phase flow) is preferable. Eulerian two-phase flow requires the introduction of closure terms representing the interactions between the two fluids in particular, in the condensation case, drag and heat transfer. Both terms involve the description of the interaction area whose definition is different from the typical one adopted in the boiling analyses. In the present work a simple but effective formulation for the interaction area is given based on the volume fraction gradient and then applied to a validation test case of steam bubbling in various subcooling conditions. It has been shown that this method gives realistic values of bubble detachment time, bubble penetration for the cases of interest in the nuclear application and in the particular application to the Fukushima Daiichi accident.
机译:蒸汽凝结的特征是气体和液体之间的界面区域相对较大,在计算流体力学(CFD)分析中,该界面区域允许创建离散域,其平均单元尺寸大于界面本身。出于这个原因,通常在接口流体动力学中使用一个具有界面跟踪的流体模型(例如,流体体积法,VOF)作为其解决方案,因为界面的解决方案需要合理数量的像元,从而减少了建模工作。但是,对于某些特殊的冷凝应用,需要计算长时间的瞬变或通过大量孔喷出的蒸汽,单流体模型的计算量太大,无法提供工程信息,而两流体模型(即欧拉两相模型)流量)为佳。欧拉两相流需要引入封闭项,该项表示两种流体之间的相互作用,特别是在冷凝情况下,是阻力和热传递。这两个术语都涉及对相互作用区域的描述,其定义与沸腾分析中采用的典型定义不同。在本工作中,基于体积分数梯度给出了相互作用区域的简单但有效的公式,然后将其应用于各种过冷条件下蒸汽鼓泡的验证测试案例。已经表明,对于核应用以及对福岛第一核电站事故的特殊应用,这种方法给出了气泡脱离时间,气泡渗透的实际值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号