首页> 外文会议>International Conference on Domain Decomposition Methods >A Smooth Transition Approach Between the Vlasov-Poisson and the Euler-Poisson System
【24h】

A Smooth Transition Approach Between the Vlasov-Poisson and the Euler-Poisson System

机译:Vlasov-Poisson与Euler-Poisson系统之间的平滑过渡方法

获取原文

摘要

Plasma dynamics is characterized by a wide range of spatial and temporal scales. Typical examples include plasmas produced around hypersonic bodies, ion wind of corona discharges, magnetic fusion processes. Depending on conditions, kinetic models of Boltzmann type or macroscopic models are commonly used for plasma physics simulations. The most common kinetic model for plasmas is the Vlasov equation, coupled with the electromagnetic field equations. On the other hand, Euler or Navier-Stokes based models coupled with the Maxwell equations are used for describing equilibrium plasma flows. Even if fluid models are sufficiently accurate to describe many observed phenomena, however, for some of them, this choice is inadequate. In these cases, it turns out that a kinetic description is strictly necessary to correctly represent the solutions. In these circumstances, the most widely used numerical methods for solving the Vlasov equation are Particle-In-Cell (PIC) approaches. They have many advantages in terms of computational cost for large dimensional problems, for enforcing physical properties such as conservation laws and in terms of flexibility when handling with complex geometries. On the other hand, these methods involve a significant level of numerical noise and the convergence rate is in general quite slow. Moreover, in situations close to thermodynamical equilibrium, the cost of PIC methods or, more in general, direct Monte Carlo simulations increases. For this reason, domain decomposition techniques have been proposed in the recent past (see). Indeed, in many situations, the resolution of the kinetic equations in the whole computational domain is unnecessary because the fluid equations coupled with suitable equations for the electromagnetic fields provide a sufficiently accurate solution, except in small zones like shock layers or extremely rarefied regions where departure from thermodynamical equilibrium is strong.
机译:等离子体动力学的特征在于各种空间和时间尺度。典型的例子包括围绕高超声音体产生的等离子体,电晕放电的离子风,磁融合过程。根据条件,Boltzmann型或宏观模型的动力学模型通常用于等离子体物理模拟。最常见的等离子体动力学模型是Vlasov方程,与电磁场方程联接。另一方面,与Maxwell方程耦合的基于欧拉或Navier-Stokes的模型用于描述平衡等离子体流动。即使流体模型足够准确地描述许多观察到的现象,对于其中一些人来说,这种选择是不充分的。在这些情况下,事实证明,严格必要的动力学描述正确代表解决方案。在这种情况下,用于求解Vlasov方程的最广泛使用的数值方法是粒子 - 细胞(PIC)方法。它们在计算成本方面具有许多优势,用于在处理复杂几何形状时执行诸如守恒法等的物理性质和灵活性。另一方面,这些方法涉及显着的数值噪声,收敛速度通常很慢。此外,在靠近热力学平衡的情况下,PIC方法的成本或更一般地,直接蒙特卡罗模拟增加。因此,在最近的过去(参见)中提出了域分解技术。实际上,在许多情况下,不需要整个计算领域中的动力学方程的分辨率,因为与电磁场的合适方程式耦合的流体方程提供了足够精确的解决方案,除了像冲击层或偏差的极其稀有的地区从热力学均衡强烈。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号