首页> 外文会议>International Conference on Ground Penetrating Radar >A Huygens subgridding approach for efficient modelling of Ground Penetrating Radar using the Finite-Difference Time-Domain method
【24h】

A Huygens subgridding approach for efficient modelling of Ground Penetrating Radar using the Finite-Difference Time-Domain method

机译:利用有限差分时间域法实现惠尼斯渗透雷达有效建模方法

获取原文

摘要

Numerical modelling of Ground Penetrating Radar (GPR) using the Finite-Difference Time-Domain (FDTD) method can be computationally intensive when large volumes must be discretised at fine spatial resolutions. This requirement exists because of the conditionally explicit nature of the FDTD algorithm, and the need to simulate fine geometrical details as commonly found in GPR antennas or in regions of high permittivity dielectric materials. We have developed and implemented a Huygens subgridding (HSG) approach in the open source software gprMax. The HSG can be applied to multiple localised regions of the FDTD grid where it is required, whilst the rest of the grid can be discretised at a more appropriate spatial resolution. An example of applying the HSG to a GPR model that includes a detailed antenna model, demonstrates the accuracy and efficiency of the approach. The relative error compared with a uniform fine grid is generally less than 1.3%. The computational time is reduced by a factor of 16. This level of computational saving is especially important for optimisation and inversion algorithms where many GPR forward models are computed in a single iteration.
机译:使用有限差分时间域(FDTD)方法的地面穿透雷达(GPR)的数值建模可以在很大的空间分辨率下离散的大容量来计算密集。由于FDTD算法的条件显式性质,并且需要模拟GPR天线中常见的细几何细节或在高介电常数介电材料区域中模拟细几何细节的需要。我们在开源软件GPRMAX中开发并实施了惠尼斯子分流(HSG)方法。 HSG可以应用于所需的FDTD网格的多个局部区域,而可以以更合适的空间分辨率离散地栅格的其余部分。将HSG应用于包括详细天线模型的GPR模型的示例演示了方法的准确性和效率。与均匀细网格相比的相对误差通常小于1.3 %。计算时间减少了16倍。这种计算节省水平对于优化和反演算法尤为重要,其中许多GPR前进模型在单个迭代中计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号