首页> 外文会议>International energy conversion engineering conference;AIAA propulsion and energy forum >On The Mathematical Modeling Of Flow Regimes And Thermal Characteristics Of Turbulent Flames In Industrial Furnaces
【24h】

On The Mathematical Modeling Of Flow Regimes And Thermal Characteristics Of Turbulent Flames In Industrial Furnaces

机译:工业炉内湍流场和湍流热特性的数学建模

获取原文

摘要

The recent advances in numerical methods and the vast development of computers had directed the designers to better development and modifications to air flow pattern and heat transfer in combustion chambers. Extensive efforts are exerted to adequately predict the air velocity and turbulence intensity distributions in the combustor zones and to reduce the emitted pollution and noise abatement to ultimately produce quite and energy efficient combustor systems. The present work fosters mathematical modeling techniques to primarily predict what happens in three-dimensional combustion chambers simulating boiler furnaces, areoengines in terms of flow regimes and interactions. The present work also demonstrates the effect of chamber design and operational parameters on performance, wall heat transfer under various operating parameters. The governing equations of mass, momentum and energy are commonly expressed in a preset form with source terms to represent pressure gradients, turbulence and viscous action . The physical and chemical characteristics of the air and fuel are obtained from tabulated data in the literature. The flow regimes and heat transfer play an important role in the efficiency and utilization of energy. The results are obtained in this work with the aid of the three-dimensional program commercial software applied to axisymmetrical and three-dimensional complex geometry with and without swirl with gaseous fuels under reacting and isothermal conditions. The present numerical grid arrangements cover the combustion chamber in the in tetrahedral volumes that exceeded 1500000 node. The numerical residual in the governing equations is typically less than 0.001 %. The obtained results include axial velocity contours, temperatures, species concentration contours , and axial distributions in combustors. Examples of large industrial furnaces are shown and are in good agreement with available measurements in the open literature .One may conclude that flow patterns, turbulence and heat transfer in combustors are strongly affected by the inlet swirl , inlet momentum ratios, combustor geometry. Both micro and macro mixing levels are influential. The present modeling capabilities can adequately predict the local flow pattern and heat transfer characteristics in Complex combustors. Proper representation of the heat transfer and radiation flux is important in adequate predictions of large furnace performance.
机译:数值方法的最新进展和计算机的广泛发展已指导设计人员更好地开发和修改燃烧室中的气流模式和传热。为了充分预测燃烧器区域内的空气速度和湍流强度分布,并减少排放的污染和消减噪音以最终生产出相当节能的燃烧器系统,人们付出了巨大的努力。目前的工作促进了数学建模技术的发展,主要是从流态和相互作用的角度预测在模拟锅炉炉,等引擎的三维燃烧室中发生的情况。本工作还展示了腔室设计和运行参数对各种运行参数下的性能,壁传热的影响。质量,动量和能量的控制方程通常以预设形式表示,并带有表示压力梯度,湍流和粘性作用的源项。空气和燃料的物理和化学特性可从文献中的表格数据中获得。流动状态和传热在能量的效率和利用中起着重要的作用。在这项工作中,借助于在反应和等温条件下使用气态燃料进行旋涡和不旋涡的轴对称和三维复杂几何体的三维程序商用软件,可以在此工作中获得结果。当前的数字网格布置以超过1500000个节点的四面体体积覆盖了燃烧室。控制方程中的数值残差通常小于0.001%。获得的结果包括轴向速度等高线,温度,物质浓度等高线以及燃烧室中的轴向分布。所示的是大型工业炉的例子,并且与公开文献中的可用测量结果非常吻合。可以得出结论,燃烧室中的流型,湍流和热传递受入口涡流,入口动量比,燃烧室几何形状的强烈影响。微观和宏观的混合水平都有影响。当前的建模能力可以充分预测复杂燃烧器中的局部流型和传热特性。正确表示传热和辐射通量对于充分预测大型炉的性能很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号