首页> 外文会议>International conference on space operations >Staring At The Sun: Implementing the Remote Sensing Window Concept for Solar Orbiter
【24h】

Staring At The Sun: Implementing the Remote Sensing Window Concept for Solar Orbiter

机译:盯着太阳:实施太阳轨道的遥感窗口概念

获取原文

摘要

ESA's Solar Orbiter mission, scheduled for launch in 2017, will enter into an elliptical orbit around the sun with a perihelion of 0.3 AU and an increasing inclination of up to 35°. Three ten-day "remote sensing windows" will be centred on the closest, most northern and most southern points of each 160-day orbit. During this remote sensing window, remote sensing instruments will peer through slots in the spacecraft's heat shield to observe the evolution of solar features and will only see a small fraction of the solar disk. However, due to the difficulty of modelling the movement of these features, they can migrate out of the instrument's field-of-view within about 3 days. It is therefore mandatory for Solar Orbiter to implement ground-based feature tracking as part of the science planning process. With ground- and Earth-orbit based observatories not always able to observe the same part of the sun as Solar Orbiter, the instruments themselves will need to provide data which can be used by the science planning team to select and track the path of the features across the solar surface. A subset of "quick look" data will need to be defined which is sufficiently detailed to enable the analysis of the movement but also small enough to be downlinked completely in one ground station pass. The rapid processing by the science ground segment located at ESAC in Spain will be critical to turn this "quick look" data into data sets that can be analysed and form the basis of spacecraft pointing requests. Flight Dynamics will be required to check and convert these pointing requests into spacecraft commands forming a complete chain of attitude segments, one for each day of the science window, such that a complete and coherent guidance profile is always available to the spacecraft. Finally, the uplink to the spacecraft must be performed on a daily basis, in such a way as to minimise disruption to on-going science observations. Furthermore, there's the question of how this can actually be achieved operationally in a safe manner. What if a ground-station pass is lost? How do we prioritise the downlink of the quick look data? How do we uplink the new guidance profile safely? How do we transition from one guidance profile segment to the other in a smooth manner, that doesn't interrupt on-going observations? The remote sensing window concept places tight operations constraints on both the mission planning and operations concept of Solar Orbiter.
机译:ESA的太阳能轨道特派团任务,计划于2017年推出,将在阳光下进入阳光下的椭圆形轨道,其剖腹产为0.3 Au,倾向于高达35°的倾斜度。三个十天的“遥感窗”将以每160天轨道的最近,最北部和最南端的最近和最南端的中心为中心。在此遥感窗口期间,遥感仪器将通过航天器的隔热罩的槽同行,以观察太阳能功能的演变,只会看到太阳能盘的一小部分。但是,由于难以建模这些功能的运动,它们可以在大约3天内从仪器的视野中迁移。因此,对于太阳能轨道器来实现基于地面的特征跟踪,作为科学规划过程的一部分。基于地面轨道的轨道和地球轨道的观察者并不总是能够观察太阳轨道的同一部分作为太阳能轨道飞机,所以仪器本身需要提供可以由科学规划团队使用的数据来选择和跟踪功能的路径穿过太阳面。需要定义“快速外观”数据的子集,这足够详细地能够在一个地站通过中能够分析移动,但也足够小,以便完全下行。位于西班牙ESAC的科学地面段的快速处理对于将此“快速外观”数据转换为可以分析并形成航天器指向请求的基础的数据集是至关重要的。飞行动态将被要求检查并将这些指向请求转换为形成完整的姿态段链的航天器命令,一个用于科学窗口的每一天,使得宇宙飞船始终可用完整和连贯的引导型材。最后,必须每天进行航天器的上行链路,以便最大限度地减少对持续科学观察的破坏。此外,有问题是如何以安全的方式在操作上运行的问题。如果地站通过丢失怎么办?我们如何优先考虑快速外观数据的下行链路?我们如何安全地上行新的指导型材?我们如何以顺利的方式从一个指导曲线段转换到另一个指导方式,这不会中断进行持续的观察?遥感窗口概念在太阳能轨道飞机的任务规划和运营概念上占据了紧密的操作约束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号