首页> 外文会议>Annual IEEE International Conference on Sensing, Communication, and Networking >Collecting High-Dimensional and Correlation-Constrained Data with Local Differential Privacy
【24h】

Collecting High-Dimensional and Correlation-Constrained Data with Local Differential Privacy

机译:通过局部差异隐私收集高维和相关受限数据

获取原文

摘要

Local differential privacy (LDP) is a promising privacy model for distributed data collection. It has been widely deployed in real-world systems (e.g. Chrome, iOS, macOS). In LDP-based mechanisms, an aggregator collects private values perturbed by each user and then analyses these values to estimate their statistics, such as frequency and mean. Most existing works focus on simple scalar value types, such as boolean and categorical values. However, with the emergence of smart sensors and internet of things, high-dimensional data are gaining increasing popularity. In many cases, correlations exist between various attributes of such data, e.g. temperature and luminance. To ensure LDP for high-dimensional data, existing solutions either partition the privacy budget ϵ among these correlated attributes or adopt sampling, both of which dilute the density of useful information and thus result in poor data utility.In this paper, we propose a relaxed LDP model, namely, univariate dominance local differential privacy (UDLDP), for high-dimensional data. We quantify the correlations between attributes and present a correlation-bounded perturbation (CBP) mechanism that optimizes the partitioning of privacy budget on each correlated attribute. Furthermore, we extend CBP to support sampling, which is a common bandwidth reduction technique in sensor networks and Internet of Things. We derive the best allocation strategy of sampling probabilities among attributes in terms of data utility, which leads to the correlation-bounded perturbation mechanism with sampling (CBPS). The performance of both mechanisms is evaluated and compared with state-of-the-art LDP mechanisms on real-world and synthetic datasets.
机译:本地差异隐私(LDP)是分布式数据收集的有希望的隐私模型。它已广泛部署在现实世界系统(例如Chrome,iOS,MacOS)中。在基于LDP的机制中,聚合器收集每个用户扰乱的私有值,然后分析这些值以估计其统计数据,例如频率和均值。大多数现有的工作都侧重于简单的标量值类型,例如布尔和分类值。然而,随着智能传感器的出现和事物互联网,高维数据正在增加普及。在许多情况下,这些数据的各种属性之间存在相关性,例如,温度和亮度。为确保高维数据的LDP,现有解决方案在这些相关属性中分区隐私预算ε或采用抽样,这两者都稀释了有用信息的密度,从而导致数据实用程序不良。在本文中,我们提出了宽松的LDP模型,即单变量统治局部差异隐私(UDLDP),用于高维数据。我们量化属性之间的相关性,并呈现相关有限的扰动(CBP)机制,该机制优化了每个相关属性对隐私预算的划分。此外,我们扩展CBP以支持采样,这是传感器网络和物联网中的公共带宽减少技术。在数据实用程序方面,我们在属性之间获得了采样概率的最佳分配策略,这导致了采样(CBPS)的相关有界扰动机制。评估两种机制的性能,并与现实世界和合成数据集上的最先进的LDP机制进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号