首页> 外文会议>International pipeline conference >ENHANCING TENSILE STRAIN CAPACITY THROUGH THE OPTIMIZATION OF WELD PROFILES
【24h】

ENHANCING TENSILE STRAIN CAPACITY THROUGH THE OPTIMIZATION OF WELD PROFILES

机译:通过优化焊接轮廓来增强拉伸应变能力

获取原文

摘要

In order to optimize cost and performance of high pressure gas pipelines by reducing the wall thickness, pipeline companies are considering the use of higher grade (X70 or above) steels or a composite pipe of thin steel liner and fiber wrap. The use of high strength steels and thinner pipes can result in challenges when the pipe is installed in areas imposing high strain demand such as discontinuous permafrost regions. For high strength steels, the difficulty of ensuring the strength overmatching of the weld metal and the potential softening of the heat affected zone (HAZ) can result in gross strain concentration in the weld region and thus reduce the strain capacity of the pipeline in the presence of weld defects. Also, a thinner pipe has lower strain capacity than a thicker pipe for the weld defect of the same dimensions. One of the economical and effective ways of mitigating the possibility of gross strain concentration and increasing the strain capacity of a weld region containing weld defects is through the use of appropriate weld profiles. For instance, adding a smooth and wide layer of weld reinforcement (termed weld overbuild) can increase the effective strength of the weld. The effectiveness of the weld overbuild in improving the tensile strain capacity of girth welds is evaluated using the Level 4a approach of the PRCI-CRES tensile strain models. The crack-driving force is obtained through finite element analysis (FEA) of welds with planar weld and HAZ flaws of various sizes. It was demonstrated that weld overbuild with appropriate dimensions is an effective method to increase the tensile strain capacity (TSC) of girth welds which may have limited TSC without the overbuild. The role of weld profiles in girth weld integrity is discussed from the perspectives of historical evidence and more recent analysis and experimental tests.
机译:为了通过减小​​壁厚来优化高压气体管道的成本和性能,管道公司正在考虑使用更高等级(X70或更高)的钢或薄钢衬和纤维包裹的复合管。当将管道安装在要求高应变要求的区域(例如不连续的永久冻土区域)中时,使用高强度钢和较细的管道可能会带来挑战。对于高强度钢,难以确保焊接金属的强度不匹配以及热影响区(HAZ)可能软化的困难会导致焊接区域中的总应变集中,从而降低存在管道时的应变能力焊缝缺陷。同样,对于相同尺寸的焊接缺陷,较细的管比较粗的管具有较低的应变能力。减轻总应变集中的可能性并增加包含焊接缺陷的焊接区域的应变能力的经济有效方法之一是通过使用适当的焊接轮廓。例如,添加光滑且宽阔的焊缝增强层(称为焊缝过度堆积)可以提高焊缝的有效强度。使用PRCI-CRES拉伸应变模型的4a级方法评估了焊缝过度膨胀对改善环缝焊缝的拉伸应变能力的有效性。通过对具有各种尺寸的平面焊缝和HAZ缺陷的焊缝进行有限元分析(FEA),可以得出裂纹驱动力。结果表明,适当尺寸的焊缝过度膨胀是一种有效的方法,可以提高环焊缝的拉伸应变能力(TSC),而在没有过度焊缝的情况下,可能会限制TSC。从历史证据以及最近的分析和实验测试的角度讨论了焊缝轮廓在周长焊缝完整性中的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号