首页> 外文会议>Conference on ground-based and airborne instrumentation for astronomy >The Integral Field Spectrograph for the Gemini Planet Imager
【24h】

The Integral Field Spectrograph for the Gemini Planet Imager

机译:双子座行星成像仪的积分场光谱仪

获取原文

摘要

The Gemini Planet Imager (GPI) is a complex optical system designed to directly detect the self-emission of young planets within two arcseconds of their host stars. After suppressing the starlight with an advanced AO system and apodized coronagraph, the dominant residual contamination in the focal plane are speckles from the atmosphere and optical surfaces. Since speckles are diffractive in nature their positions in the field are strongly wavelength dependent, while an actual companion planet will remain at fixed separation. By comparing multiple images at different wavelengths taken simultaneously, we can freeze the speckle pattern and extract the planet light adding an order of magnitude of contrast. To achieve a bandpass of 20%, sufficient to perform speckle suppression, and to observe the entire two arcsecond field of view at diffraction limited sampling, we designed and built an integral field spectrograph with extremely low wavefront error and almost no chromatic aberration. The spectrograph is fully cryogenic and operates in the wavelength range 1 to 2.4 microns with five selectable filters. A prism is used to produce a spectral resolution of 45 in the primary detection band and maintain high throughput. Based on the OSIRIS spectrograph at Keck, we selected to use a lenslet-based spectrograph to achieve an rms wavefront error of approximately 25 nm. Over 36,000 spectra are taken simultaneously and reassembled into image cubes that have roughly 192×192 spatial elements and contain between 11 and 20 spectral channels. The primary dispersion prism can be replaced with a Wollaston prism for dual polarization measurements. The spectrograph also has a pupil-viewing mode for alignment and calibration.
机译:双子座行星成像仪(GPI)是一个复杂的光学系统,旨在直接检测年轻行星在其宿主恒星的两弧秒内的自发射。用先进的AO系统和变迹的日冕仪抑制星光后,焦平面中的主要残留污染物是来自大气和光学表面的斑点。由于散斑本质上是衍射的,因此它们在场中的位置与波长密切相关,而实际的同伴行星将保持固定的间隔。通过比较同时拍摄的不同波长的多个图像,我们可以冻结斑点图案,并提取一个数量级的对比度来提取行星光。为了获得20%的带通量,足以执行斑点抑制,并在衍射受限采样时观察整个2 arcsecond视场,我们设计并制造了具有极低波前误差且几乎没有色差的积分场光谱仪。光谱仪是完全低温的,并在五个至两个可选滤光片的情况下在1到2.4微米的波长范围内工作。棱镜用于在主要检测波段中产生45的光谱分辨率,并保持高通量。基于Keck的OSIRIS光谱仪,我们选择使用基于小透镜的光谱仪来实现约25 nm的均方根波前误差。同时拍摄了超过36,000个光谱,并将其重新组装成具有大约192×192空间元素并包含11至20个光谱通道的图像立方体。初级色散棱镜可以用Wollaston棱镜代替,以进行双偏振测量。光谱仪还具有用于对准和校准的瞳孔观察模式。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号