首页> 外文会议>International astronautical congress >MULTI-DISCIPLINARY DESIGN OPTIMIZATION FOR LAUNCHER FAMILY DESIGN
【24h】

MULTI-DISCIPLINARY DESIGN OPTIMIZATION FOR LAUNCHER FAMILY DESIGN

机译:发射器家庭设计的多学科设计优化

获取原文

摘要

The design of new launch vehicles (e.g. ESA Future Launcher Preparatory Programme FLPP) is a very complex task, which is traditionally solved in an iterative process during which experts from various disciplines (structures, aerodynamics, guidance&control, propulsion) refine and update their subsystem designs until they converge to a consistent, good design. This process is motivated by the need for an optimized configuration that yields sufficient payload performance at minimum cost, while complying in full to the user requirements. The key to an efficient and effective launcher staging optimization process is to tackle the problem as a multi-disciplinary design optimization (MDO) and not to decompose the system. The methodology of All-at-Once (AAO) optimization has demonstrated superior potential, when it comes to launch vehicle design, permitting the concurrent consideration of certain design choices not only towards the related subsystems, but also towards performance and feasibility of the overall system. The presentation provides an overview of the latest multi-disciplinary optimization capabilities for launch vehicle design as currently under development in an ESA RD project with implementation in ASTOS. The objective of the activity is to mature the technology for industrial-grade utilization. Consequently, the focus is on key improvements of the existing framework on subsystem modelling and algorithmic cross-over layer. In this regard, the presentation takes a close look at preliminary results in the following areas: 1. Integration of a detailed stage structural model generator for metallic as well as fibre reinforced structures. Semi-analytic method for computation of mass and stress properties of tanks, interstages and other key structural elements in-the-loop; 2. Automatic identification of critical load cases (ground, windgust, engine thrust, aerodynamic loads, tank pressure, mech. fluxes, motor/engine ignition and shutdown, thrust oscillations) out of a set of multiple mission scenarios; 3. Launcher controllability analysis including identification of maximum static deflection of the thrust vector control (TVC), computation of COG/MOI and A6/K1 coefficients as function of time; 4. Enhanced coupling and interaction of structure, aerodynamics, GNC and performance in the MDO (i.e. collaborative optimization) process, 5. Exploitation of the WORHP/eNLP non-linear programming solver for AAO optimization; 6. Sensitivity analysis for aerodynamic coefficients and investigation of alternative aerodynamics data generation methods; 7. Consideration of critical load cases and TVC/general GNC constraints in the optimization process. The MDO architecture is presented along with some results to illustrate the advanced capabilities of the MDO implementation in ASTOS for conceptual design of space transportation systems.
机译:新运载火箭的设计(例如,ESA未来运载火箭的预备计划FLPP)是一项非常复杂的任务,传统上是通过迭代过程解决的,在此过程中,来自各个学科(结构,空气动力学,制导与控制,推进)的专家完善并更新了子系统设计直到它们收敛到一致,良好的设计。需要一个优化的配置以最小的成本产生足够的有效负载性能,同时完全满足用户要求的动机推动了这一过程。有效启动发射器阶段优化过程的关键是作为多学科设计优化(MDO)解决问题,而不是分解系统。全天候(AAO)优化的方法论已经证明了在运载火箭设计方面的巨大潜力,不仅可以同时考虑相关子系统的某些设计选择,而且还可以考虑整个系统的性能和可行性。该演示文稿概述了ESA RD项目中目前正在开发的运载火箭设计的最新多学科优化功能,并已在ASTOS中实施。该活动的目的是使工业级利用技术成熟。因此,重点在于对子系统建模和算法跨接层的现有框架的关键改进。在这方面,本演讲仔细研究了以下领域的初步结果:1.集成了用于金属以及纤维增强结构的详细阶段结构模型生成器。半解析法,用于计算罐内,级间和其他关键结构元件的质量和应力特性; 2.从多个任务场景中自动识别关键载荷工况(地面,阵风,发动机推力,空气动力学载荷,油箱压力,机械通量,电动机/发动机点火和停机,推力振动); 3.发射器可控性分析,包括确定推力矢量控制(TVC)的最大静态挠度,计算COG / MOI和A6 / K1系数随时间的变化; 4.在MDO(即协作优化)过程中增强了结构,空气动力学,GNC和性能之间的耦合和相互作用,5.利用WORHP / eNLP非线性规划求解器进行AAO优化; 6.空气动力学系数的敏感性分析和替代空气动力学数据生成方法的研究; 7.在优化过程中考虑关键载荷工况和TVC / GNC通用约束。提出了MDO体系结构以及一些结果,以说明ASTOS中MDO实现的高级功能,用于空间运输系统的概念设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号