首页> 外文会议>International astronautical congress >INFLUENCE OF SIMULATED MICROGRAVITY ON CORTICAL (SUBMEMBRANE) CYTOSKELETON'S STRUCTURE OF THE SKELETAL MUSCLE FIBERS AND CARDIOMYOCYTES OF RODENTS
【24h】

INFLUENCE OF SIMULATED MICROGRAVITY ON CORTICAL (SUBMEMBRANE) CYTOSKELETON'S STRUCTURE OF THE SKELETAL MUSCLE FIBERS AND CARDIOMYOCYTES OF RODENTS

机译:模拟微重力对啮齿类动物骨骼肌中纤维(纤溶)细胞骨架结构的影响

获取原文

摘要

Stay under conditions of microgravity results in number of structural and functional changes in muscle and myocardium cells. Load decrease on hindlimb cause external mechanical tension reduction of skeletal muscle fibers. Volume load on cardiomyocytes increases due to fluid shift in cranial direction at early stages of gravitational unloading. Mechanical tension change may cause deformations in different compartments of cells, particularly in cortical cytoskeleton. Stiffness may play role of structural changes indicator. Cortical cytoskeleton contribution to longitudinal stiffness is negligible relatively to one of contractile apparatus. For this reason structural changes in skeletal muscle fibers and cardiomyocytes could be estimated by measuring transversal stiffness followed by cytoskeleton proteins content analysis. Transversal stiffness was measured with atomic force microscopy technique. Protein content was determined with western-blotting. Microgravity effect on skeletal muscles and cardiomyocytes was simulated with Ilyin-Novikov antiorthostatic suspension model with Morey-Holton modification of different duration. We showed the soleus muscle fibers transversal stiffness of sarcolemma with cortical cytoskeleton decreased step-by-step through hindlimb suspension period. Cardiomyocytes transversal stiffness dropped after 12 hours of suspension, came to normal level after 18 hours and continued grow till the third day of unloading. These parameters correlate with non-muscle isoform of actin content in membrane fraction, which forms cortical cytoskeleton. The stiffness was also associated with differently directed change of alpha-actinin-1 and alpha-actinin-4 content in both membrane and cytoplasmic fractions. This change allows us of suggestion that these proteins are involved in a signaling pathways, which form different response of cardiomyocytes and skeletal muscle cells on external mechanical conditions change.
机译:停留在微重力条件下会导致肌肉和心肌细胞的结构和功能发生大量变化。后肢的负荷减少会导致骨骼肌纤维的外部机械张力降低。由于在重力卸载的早期,流体沿颅骨方向移位,心肌细胞的体积载荷增加。机械张力的变化可能导致细胞不同区室的变形,尤其是皮质细胞骨架的变形。刚度可能是结构变化指标的作用。皮质细胞骨架对纵向刚度的贡献相对于可收缩装置之一可忽略不计。因此,可以通过测量横向刚度,然后进行细胞骨架蛋白含量分析,来估算骨骼肌纤维和心肌细胞的结构变化。横向刚度用原子力显微镜技术测量。蛋白质含量通过蛋白质印迹法测定。使用Ilyin-Novikov抗体位性悬吊模型,对莫雷-霍顿进行不同持续时间的修改,模拟了微重力对骨骼肌和心肌细胞的影响。我们显示,在后肢悬吊期间,肌膜的比目鱼肌纤维的横向刚度随着皮质细胞骨架的降低而逐步降低。悬吊12小时后,心肌细胞的横向硬度下降,18小时后恢复到正常水平,并持续生长直至卸载的第三天。这些参数与膜级分中肌动蛋白含量的非肌肉同工型相关,形成皮层细胞骨架。刚度还与膜和细胞质部分中α-actinin-1和α-actinin-4含量的不同定向变化有关。这种变化使我们建议这些蛋白质参与信号传导途径,这些信号途径在外部机械条件变化时形成心肌细胞和骨骼肌细胞的不同反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号