首页> 外文会议>IEEE Annual Symposium on Foundations of Computer Science >Fourier Sparsity, Spectral Norm, and the Log-Rank Conjecture
【24h】

Fourier Sparsity, Spectral Norm, and the Log-Rank Conjecture

机译:傅里叶稀疏度,谱范数和对数秩猜想

获取原文

摘要

We study Boolean functions with sparse Fourier coefficients or small spectral norm, and show their applications to the Log-rank Conjecture for XOR functions f(x ± y) - a fairly large class of functions including well studied ones such as Equality and Hamming Distance. The rank of the communication matrix M_f for such functions is exactly the Fourier sparsity of f. Let d be the F2-degree of f and DCC(f) stand for the deterministic communication complexity for f(x ± y). We show that 1. DCC(f) = O(2d2/2 logd-2 ||hat f||_1). In particular, the Log-rank conjecture holds for XOR functions with constant F2-degree. 2. DCC(f) = O(d ||hat f||_1) = O(□rank(M_f)log rank(M_f)). We obtain our results through a degree-reduction protocol based on a variant of polynomial rank, and actually conjecture that its communication cost is at most logO(1)rank(M_f). The above bounds are obtained from different analysis for the number of parity queries required to reduce f's F2-degree. Our bounds also hold for the parity decision tree complexity of f, a measure that is no less than the communication complexity. Along the way we also show several structural results about Boolean functions with small Fourier sparsity or small spectral norm, which could be of independent interest. For functions f with constant F2-degree, we show that: 1) f can be written as the summation of quasi-polynomially many indicator functions of subspaces with pm-signs, improving the previous doubly exponential upper bound by Green and Sanders; 2) being sparse in Fourier domain is polynomially equivalent to having a small parity decision tree complexity; 3) f depends only on polylog||hat f||_1 linear functions of input variables. For functions f with small spectral norm, we show that: 1) there is an affine subspace with co-dimension O(||hat f||_1) on which f is a constant, and 2) there is a parity decision tree of depth O(||hat f||_1 log ||hat f||_0) for computing f.
机译:我们研究了具有稀疏傅立叶系数或较小谱范数的布尔函数,并展示了它们在XOR函数f(x±y)的对数秩猜想中的应用-这是相当大的一类函数,其中包括经过研究的等式和汉明距离。用于此类功能的通信矩阵M_f的秩恰好是f的傅立叶稀疏性。令d为f的F2度,DCC(f)代表f(x±y)的确定性通信复杂度。我们证明1. DCC(f)= O(2d2 / 2 logd-2 || hat f || _1)。特别地,对数秩猜想适用于具有恒定F2度的XOR函数。 2. DCC(f)= O(d || hat f || _1)= O(□rank(M_f)log rank(M_f))。我们通过基于多项式秩的变体的降阶协议获得了结果,并且实际上推测其通信成本最多为logO(1)rank(M_f)。从减少f的F2度所需的奇偶校验查询数量的不同分析中可以得出上述界限。我们的界限也适用于f的奇偶决策树复杂度,该度量不少于通信复杂度。在此过程中,我们还展示了有关布尔函数的几个结构结果,这些布尔函数具有较小的傅立叶稀疏性或较小的频谱范数,这可能是独立引起关注的。对于具有恒定F2度的函数f,我们证明:1)f可以写为具有pm符号的子空间的拟多项式求和函数的总和,从而改善了Green和Sanders先前的双指数上限。 2)在傅立叶域中稀疏在多项式上等同于具有较小的奇偶校验决策树复杂度; 3)f仅取决于输入变量的polylog || hat f || _1线性函数。对于具有较小频谱范数的函数f,我们证明:1)有一个维数为O(|| hat f || _1)的仿射子空间,其上f为常数,以及2)有一个奇偶决策树深度O(|| hat f || _1 log || hat f || _0)用于计算f。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号