【24h】

Strong Backdoors to Bounded Treewidth SAT

机译:有限树宽SAT的强大后门

获取原文

摘要

There are various approaches to exploiting "hidden structure" in instances of hard combinatorial problems to allow faster algorithms than for general unstructured or random instances. For SAT and its counting version #SAT, hidden structure has been exploited in terms of decomposability and strong backdoor sets. Decomposability can be considered in terms of the tree width of a graph that is associated with the given CNF formula, for instance by considering clauses and variables as vertices of the graph, and making a variable adjacent with all the clauses it appears in. On the other hand, a strong backdoor set of a CNF formula is a set of variables such that each assignment to this set moves the formula into a fixed class for which (#)SAT can be solved in polynomial time. In this paper we combine the two above approaches. In particular, we study the algorithmic question of finding a small strong backdoor set into the class W ≤ t of CNF formulas whose associated graphs have tree width at most t. The main results are positive: (1) There is a cubic-time algorithm that, given a CNF formula F and two constants k, t ≥ 0, either finds a strong W_≤ t-backdoor set of size at most 2k, or concludes that F has no strong W_≤ t-backdoor set of size at most k. (2) There is a cubic-time algorithm that, given a CNF formula F, computes the number of satisfying assignments of F or concludes that sb_t(F)>k, for any pair of constants k, t ≥ 0. Here, sb_t(F) denotes the size of a smallest strong W_≤ t-backdoor set of F. We establish both results by distinguishing between two cases, depending on whether the tree width of the given formula is small or large. For both results the case of small tree width can be dealt with relatively standard methods. The case of large tree width is challenging and requires new and sophisticated combinatorial arguments. The main tool is an auxiliary graph whose ver- ices represent sub graphs in F's associated graph. It captures various ways to assemble large-tree width sub graphs in F's associated graph. This is used to show that every backdoor set of size k intersects a certain set of variables whose size is bounded by a function of k and t. For any other set of k variables, one can use the auxiliary graph to find an assignment t to these variables such that the graph associated with F[t] has tree width at least t+1. The significance of our results lies in the fact that they allow us to exploit algorithmically a hidden structure in formulas that is not accessible by any one of the two approaches (decomposability, backdoors) alone. Already a backdoor of size 1 on top of tree width 1 (i.e., sb_1(F)=1) entails formulas of arbitrarily large tree width and arbitrarily large cycle cut sets (variables that need to be deleted to make the instance a cyclic).
机译:在硬性组合问题的情况下,可以采用多种方法来利用“隐藏结构”,以使算法比一般的非结构化或随机性实例更快。对于SAT及其计数版本#SAT,已根据可分解性和强大的后门集开发了隐藏结构。可以根据与给定的CNF公式关联的图的树宽来考虑可分解性,例如,通过将子句和变量视为图的顶点,并使变量与它出现在其中的所有子句相邻,来解决此问题。另一方面,CNF公式的一个强大的后门集是一组变量,这样对该集的每次赋值都会将公式移到一个固定的类中,对于该类而言,(#)SAT可以在多项式时间内求解。在本文中,我们结合了以上两种方法。尤其是,我们研究了在CNF公式的W≤t类别中找到一个小的强后门集的算法问题,该类别的相关图具有最多t的树宽。主要结果是肯定的:(1)有一种立方时间算法,给定一个CNF公式F和两个常数k,t≥0,或者找到一个最大为2k的强W_≤t后门集合,或者得出结论F没有最多k的强W_≤t后门集合。 (2)对于给定的任何常数对k,t≥0,有一种三次时间算法,给定CNF公式F,计算满足F的赋值数或得出sb_t(F)> k的结论。 (F)表示F的最小强W_≤t后门集合的大小。我们通过区分两种情况来建立这两种结果,具体取决于给定公式的树宽是小还是大。对于这两个结果,可以使用相对标准的方法来处理小树宽的情况。大树宽的情况具有挑战性,需要新的和复杂的组合参数。主要工具是一个辅助图,其顶点表示F关联图中的子图。它捕获了在F的关联图中组装大树宽度子图的各种方式。这用于显示大小为k的每个后门集与一组特定变量相交,这些变量的大小受k和t的函数限制。对于任何其他k个变量集,可以使用辅助图找到这些变量的分配t,以使与F [t]相关的图的树宽至少为t + 1。我们的结果的意义在于,它们使我们能够在算法上利用公式中的一种隐藏结构,而这两种方法(可分解性,后门)中的任何一种都无法单独访问。在树宽1顶部已经有一个大小为1的后门(即sb_1(F)= 1),需要任意大的树宽和任意大的循环割集(需要删除变量以使实例成为循环变量)的公式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号