首页> 外文会议>AIAA fluid dynamics conference and exhibit >Linearized Navier-Stokes Simulation of the Spatial Stability of a Hypersonic Boundary Layer in Chemical Equilibrium
【24h】

Linearized Navier-Stokes Simulation of the Spatial Stability of a Hypersonic Boundary Layer in Chemical Equilibrium

机译:化学平衡中超音速边界层空间稳定性的线性Navier-Stokes模拟

获取原文

摘要

For certain hypersonic flight conditions, high temperature effects, also known as "real gas effects", become important. In this context, chemical equilibrium refers to a flow where the time scales associated with the chemical reactions are much shorter than the characteristic time scales associated with the fluid dynamics. In this paper, the hydrodynamic stability of the compressible boundary layer in chemical equilibrium was investigated using linearized Navier-Stokes simulations including a simplified chemical equilibrium model. Adequate knowledge of the possible hydrodynamic instabilities present for hypersonic chemical equilibrium flows, is essential for the design of aircraft and engines that fly at such speeds. A high-order-accurate Linearized Navier-Stokes code was developed to investigate the stability of hypersonic boundary layers in chemical equilibrium. Towards this end, the conservation equations for a three-dimensional viscous compressible laminar chemical equilibrium flow subjected to infinitesimal disturbances were derived. These equations were discretized in space using 6th and 4th order finite differences in the streamwise and wall-normal directions, respectively, and integrated in time using a 4th order Runge Kutta scheme. For model verification, test cases for a flat plate were compared with DNS and LST reference data, and presented very good agreement for growth rates and eigenfunc-tions. The new Linearized Navier-Stokes method enables quantification of the instabilities, offers a cost effective way to investigate the linear instability regime, and the influence of compressibility and high temperature effects.
机译:对于某些高超声速飞行条件,高温效应(也称为“真实气体效应”)变得重要。在本文中,化学平衡是指一种流动,其中与化学反应相关的时间尺度比与流体动力学相关的特征时间尺度短得多。在本文中,使用包括简化的化学平衡模型的线性化Navier-Stokes模拟,研究了化学平衡中可压缩边界层的水动力稳定性。对高超声速化学平衡流可能存在的流体动力学不稳定性的充分了解,对于以这种速度飞行的飞机和发动机的设计至关重要。为了研究高超声速边界层在化学平衡中的稳定性,开发了一种高阶精度的线性Navier-Stokes码。为此,推导了受到极小扰动的三维粘性可压缩层流化学平衡流的守恒方程。这些方程在空间上分别使用流向和壁法线方向的6和4阶有限差分进行离散,并使用4阶Runge Kutta方案在时间上进行积分。为了进行模型验证,将平板的测试用例与DNS和LST参考数据进行了比较,并在增长率和特征方面表现出很好的一致性。新的线性化Navier-Stokes方法可以对不稳定性进行量化,提供了一种经济有效的方法来研究线性不稳定性状态以及可压缩性和高温效应的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号