首页> 外文会议>AIAA fluid dynamics conference and exhibit >Vortex Breakdown and Global Modes in Swirling Combustor Flows with Axial Air Injection
【24h】

Vortex Breakdown and Global Modes in Swirling Combustor Flows with Axial Air Injection

机译:轴向空气喷射在旋流燃烧器流中的涡流破坏和整体模式

获取原文

摘要

Strongly swirling flows are used in the vast majority of gas turbine combustors. The complex flow field downstream of the vortex breakdown provides good flame stabilization but is also prone to self-excited large scale hydrodynamic instabilities. The role of these global modes, which usually manifest in a Precessing Vortex Core (PVC), for the combustion process is still an open question and influences on mixing processes and ther-moacoustic oscillations have been proposed. In the current study the effect of axial air injection through a truncated center body on the type of the Vortex Breakdown (VB) and the global hydrodynamic mode is investigated using a combined experimental, numerical, and analytical approach. A parametric study of the isothermal flow field inside the combustion chamber and in the mixing tube upstream of the combustor is carried out in a water tunnel test facility. Selected configurations were further assessed under reacting conditions using methane fuel. Next, a Large Eddy Simulation (LES) was conducted and successfully validated with the experimental data. All results show a strong effect of the inflow parameters (axial injection rate and inlet swirl number) on the type of the vortex-breakdown and the frequency, amplitude, and shape of the global mode. The reacting cases show very similar results as the isothermal cases, proving the relevance of the isothermal investigation. Linear local hydrodynamic stability analyses, carried out on the time-average measured velocity data and the numerically obtained data, yield the absolutely unstable domain inside the flow field. Axial injection is shown to impede a zone of absolute instability near the combustor inlet while a a second zone further downstream remains. An excellent agreement of the measured to the calculated frequencies of the global modes is achieved over the whole range of investigated axial injection rates. The findings of this paper help to understand the mechanisms that are involved into the occurrence of global modes in swirling combustor flows and how they may be controlled by small flow field modifications. Furthermore, axial air injection is shown to provide a suitable flow field for flashback-proof combustor operation.
机译:绝大多数燃气轮机燃烧室都使用强涡流。涡流破裂下游的复杂流场提供了良好的火焰稳定性,但也易于自激产生大规模流体动力学不稳定性。这些整体模式在燃烧过程中通常表现在旋进旋涡芯(PVC)中的作用仍然是一个悬而未决的问题,已经提出了对混合过程和热声振荡的影响。在当前的研究中,通过组合的实验,数值和分析方法,研究了通过截断的中心体进行轴向空气注入对涡旋破坏(VB)类型和整体流体动力学模式的影响。在水道测试设备中对燃烧室内部和燃烧室上游混合管中的等温流场进行了参数研究。使用甲烷燃料在反应条件下进一步评估了选定的构型。接下来,进行了大涡模拟(LES),并成功地通过实验数据进行了验证。所有结果表明,流入参数(轴向注入速率和入口涡流数)对涡流破坏的类型以及整体模式的频率,幅度和形状有很大的影响。反应情况显示出与等温情况非常相似的结果,证明了等温研究的相关性。对时间平均测得的速度数据和数值获得的数据进行线性局部水动力稳定性分析,得到流场内绝对不稳定的区域。示出了轴向喷射阻碍了燃烧器入口附近的绝对不稳定区域,而仍然存在更下游的第二区域。在所研究的轴向注入速率的整个范围内,都可以将实测值与计算出来的整体模态频率完美地吻合。本文的发现有助于理解旋流燃烧室整体模式的发生机理,以及如何通过较小的流场修正来控制整体模式。此外,所示的轴向空气喷射为反燃燃烧室操作提供了合适的流场。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号