首页> 外文会议>International colloquium on automata, languages and programming >Deterministic Single Exponential Time Algorithms for Connectivity Problems Parameterized by Treewidth
【24h】

Deterministic Single Exponential Time Algorithms for Connectivity Problems Parameterized by Treewidth

机译:树宽参数化的连通性问题的确定性单指数时间算法

获取原文

摘要

It is well known that many local graph problems, like Vertex Cover and Dominating Set, can be solved in 2~(O(tw))n~(O(1)) time for graphs with a given tree decomposition of width tw. However, for nonlocal problems, like the fundamental class of connectivity problems, for a long time it was unknown how to do this faster than tw~(O(tw))n~(O(1)) until recently, when Cygan et al. (FOCS 2011) introduced the Cut&Count technique that gives randomized algorithms for a wide range of connectivity problems running in time c~(tw)n~(O(1)) for a small constant c. In this paper, we show that we can improve upon the Cut&Count technique in multiple ways, with two new techniques. The first technique (rank-based approach) gives deterministic algorithms with O(c~(tw)n) running time for connectivity problems (like Hamiltonian Cycle and Stei-ner Tree) and for weighted variants of these; the second technique (determinant approach) gives deterministic algorithms running in time c~(tw)n~(O(1)) for counting versions, e.g., counting the number of Hamiltonian cycles for graphs of treewidth tw. The rank-based approach introduces a new technique to speed up dynamic programming algorithms which is likely to have more applications. The determinant-based approach uses the Matrix Tree Theorem for deriving closed formulas for counting versions of connectivity problems; we show how to evaluate those formulas via dynamic programming.
机译:众所周知,对于给定宽度为tw的树分解图,可以在2〜(O(tw))n〜(O(1))时间内解决许多局部图问题,例如“顶点覆盖”和“支配集”。然而,对于非局部性问题,如连接性问题的基本类别,很长一段时间以来,直到最近,直到Cygan等人才知道如何比tw〜(O(tw))n〜(O(1))更快地完成此任务。 (FOCS 2011)引入了Cut&Count技术,该技术为随机常数c较小的时间c〜(tw)n〜(O(1))中运行的各种连通性问题提供了随机算法。在本文中,我们表明可以使用两种新技术以多种方式改进Cut&Count技术。第一种技术(基于秩的方法)为连接性问题(例如汉密尔顿循环和Steiner树)及其加权变体提供了O(c〜(tw)n)运行时间的确定性算法;第二种技术(确定性方法)给出了在时间c〜(tw)n〜(O(1))中运行的确定性算法,用于计算版本,例如,计算树宽tw图的哈密顿循环数。基于等级的方法引入了一种新技术来加速动态编程算法,该算法可能会有更多的应用。基于行列式的方法使用矩阵树定理来推导封闭式,以计算连通性问题的版本。我们展示了如何通过动态编程来评估那些公式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号