首页> 外文会议>FISITA world automotive congress >Improvement of the Automotive Spark Ignition Engine Performance by Supercharging and the Bioethanol Use
【24h】

Improvement of the Automotive Spark Ignition Engine Performance by Supercharging and the Bioethanol Use

机译:通过增压和生物乙醇的使用来改善汽车火花点火发动机的性能

获取原文

摘要

The general objective of this paper is application of the supercharging method and bioethanol use at the spark ignition engine for improving performance of power and torque, improving engine efficiency, decrease of the emissions level and increases of the engine specific power. The paper brings an important contribution to pollution problems solving in large urban areas, the solution can being easily implemented on spark ignition engines in running, even on the old designs which can be converted to fit the current rules of pollution. A modern method to increase efficiency and specific power of the spark ignition engines is supercharging. Supercharging is common for diesel engines, but for SI engines becomes restrictive because of the main disadvantages represented by abnormal combustion phenomena with knock, exhaust gases temperature increasing, engine thermal and mechanical stresses increasing. By using modern control methods of the combustion, supercharging becomes an efficient method even for SI engine. The theoretical and experimental investigations were performed on a 1.5L aspirated spark ignition engine with MP injection which was supercharged. The supercharged engine was fuelled with gasoline-bioethanol blends. The use of bioethanol at supercharged SI engine assures an efficient cooling effect of the intake air due to its higher heat of vaporization. The intake air cooling effect leads to a volumetric efficiency increasing and the knock appearance risk is reduced. For to achieve of the research objectives the following methodology was used: modelling of the thermo-gas-dynamics processes inside engine cylinder for the theoretical evaluation of engine energetic performance; experimental investigations carrying out on the test bed of the SI engine in two versions: aspirated engine and supercharged engine fuelled with gasoline- bioethanol blends, respectively. For to achieve of the research objectives the following methodology was used: modelling of the thermo-gas-dynamics processes inside engine cylinder for the theoretical evaluation of energetic and pollution performance for aspirated engine and also for of the supercharged engine fuelled with gasoline-bioethanol blends in order to decrease the experimental investigations volume; experimental investigations carrying out on the test bed of the SI engine in two versions: aspirated engine and supercharged engine fuelled with gasoline-bioethanol blends, respectively; the interfacing of the electronic control units for the supercharged spark ignition engine fuelled with gasoline- bioethanol blends. The obtained results of the research are: development of a physic-mathematical model to simulate thermo-gas-dynamics processes inside engine cylinder; determining the bioethanol influences on the engine cylinder filling; determining the bioethanol influences on the supercharged spark-ignition engine combustion process; engine efficiency increasing by up to 10 %, specific power increasing by up to 33 %, pollutant emission levels reduction (was obtained a reduction of 20 % for NO_x emissions, a 10 % reduction of CO emission and a 13 % reduction of HC emission); establishing the optimal correlation between dosage-electric spark advance-boost pressure-exhaust gases temperature-coefficient of excess air on one hand and functional regime of the engine on the other hand. The abnormal combustion phenomena with knock study in this paper were not developed. As a research novelty is the solution for use of gasoline- bioethanol blends at the supercharging SI engine. Original elements of the research are: application of the supercharging procedure to an aspirated car spark ignition engine; use of gasoline- bioethanol blends as an injected fuel in blower downstream with effect of cooling the compressed air. The SI engine supercharging and use of gasoline- bioethanol blends is a good method to efficiency and power performance increasing. The pollutant emissions level decreases due to the improvement of the combustion processes. Bioethanol can be considered as an efficient anti-knock agent.
机译:本文的总体目标是在火花点火发动机中应用增压方法和生物乙醇,以改善功率和扭矩性能,提高发动机效率,降低排放水平并增加发动机比功率。本文为解决大城市地区的污染问题做出了重要贡献,该解决方案即使在可以根据当前污染规则进行转换的旧设计上,也可以轻松地在运行中的火花点火发动机上实施。一种提高火花点火发动机的效率和比功率的现代方法是增压。增压对于柴油发动机是常见的,但是对于SI发动机而言,由于其主要缺点是爆震,废气温度升高,发动机热应力和机械应力增加而引起的异常燃烧现象,因此成为限制性发动机。通过使用现代的燃烧控制方法,即使对于SI发动机,增压也成为一种有效的方法。理论和实验研究是在1.5升带MP增压增压吸入式火花点火发动机上进行的。增压发动机由汽油-生物乙醇混合燃料供油。由于增压的汽化热量较高,在增压式SI发动机上使用生物乙醇可确保进气的有效冷却效果。进气冷却效果导致容积效率提高,并且降低了爆震现象的风险。为了达到研究目的,使用了以下方法:对发动机气缸内的热气动力学过程进行建模,以对发动机的能量性能进行理论评估;在SI发动机的试验台上进行的实验研究有两种形式:分别为吸气式发动机和以汽油-生物乙醇混合物为燃料的增压发动机。为了达到研究目的,使用了以下方法:对发动机气缸内的热气动力学过程进行建模,以对吸气式发动机的能量和污染性能进行理论评估,以及对以汽油-生物乙醇混合物为燃料的增压发动机进行能量和污染性能的理论评估。为了减少实验研究量;在SI发动机的试验台上进行了两种形式的实验研究:分别为吸气发动机和以汽油-生物乙醇混合物为燃料的增压发动机;汽油-生物乙醇混合燃料的增压火花点火发动机电子控制单元的接口。研究获得的结果是:开发了物理数学模型来模拟发动机气缸内的热气动力学过程。确定生物乙醇对发动机气缸填充的影响;确定生物乙醇对增压火花点火发动机燃烧过程的影响;发动机效率提高了10%,比功率提高了33%,污染物排放水平降低了(NO_x排放量减少了20%,CO排放量减少了10%,HC排放量减少了13%) ;建立一方面使过量空气的剂量-电火花提前-增压-排气温度系数与发动机的功能状态之间的最佳相关性。本文尚未开展爆震研究的异常燃烧现象。作为研究的新颖性,是在增压SI发动机上使用汽油-生物乙醇混合物的解决方案。该研究的原始要素是:增压程序在有气汽车火花点火发动机中的应用;使用汽油-生物乙醇混合物作为下游鼓风机中的喷射燃料,从而冷却压缩空气。 SI发动机增压和使用汽油-生物乙醇混合物是提高效率和动力性能的一种好方法。由于燃烧过程的改善,污染物排放水平降低。生物乙醇可以被认为是一种有效的抗爆剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号