首页> 外文会议>Southern Biomedical Engineering Conference >Hybrid Inorganic-Organic Interpenetrating Network Hydrogels as Optical Biosensors
【24h】

Hybrid Inorganic-Organic Interpenetrating Network Hydrogels as Optical Biosensors

机译:杂交无机 - 有机互穿网络水凝胶作为光学生物传感器

获取原文

摘要

Chronic disease management currently requires frequent withdrawal of bodily fluids to assess biomolecule levels and are associated with patient discomfort and noncompliance. Thus, a need exists for less invasive, on-demand biochemistry monitoring. Our lab has investigated poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels functionalized with glucose oxidase and palladium benzoporphyrin phosphors as fully-implantable luminescent glucose sensors. These pHEMA-based sensors can be injected subcutaneously and have successfully monitored rising and falling blood glucose two hours after implantation in porcine models. However, decreasing tissue oxygen levels near the sensor as the injection site heals prevented long-term sensor function in vivo (i.e. 30 days). This work investigates the use of the siloxane methacrylate, 3-[Tris(trimethylsiloxy) silyl]propyl methacrylate (TRIS) and N, N-dimethyl acrylamide (DMA) to create hybrid inorganic-organic interpenetrating network hydrogels (IPNs). IPNs were fabricated using a sequential polymerization method. A 50:50 v:v% TRIS:DMA hydrogel containing a palladium benzoporphyrin oxygen indicator was fabricated. This first network was then soaked overnight in a DMA homopolymer precursor, photopolymerized throughout the first network, and hydrated in PBS. Stern-Volmer oxygen diffusion kinetics (luminescence lifetime) indicate a 300% increase in oxygen permeability through the IPNs compared to pHEMA. Additionally, we have enhanced gel hydration by 33% while maintaining similar glucose transport to pHEMA gels (Dglucose = 3.6 x 10-7cm2/s). Introduction of microdomains containing glucose oxidase indicate optical response to glucose in the hypo-and euglycemic ranges in vitro, indicating potential of these gels as glucose biosensors. Ongoing efforts include extending the dynamic range into the hyperglycemic region and evaluating in vivo performance of IPNs as oxygen sensors (phosphor only) and glucose sensors (IPN microcomposite) in porcine- models.
机译:慢性病管理目前需要频繁地撤回身体流体以评估生物分子水平,并且与患者的不适和不合规有关。因此,需要较少的侵入性,按需生物化学监测。我们的实验室研究了用葡萄糖氧化酶和钯苯并卟啉磷光体官能化的聚(2-羟乙基甲基丙烯酸酯)(PHEMA)水凝胶作为完全可植入的发光葡萄糖传感器。这些基于PHEMA的传感器可以皮下注射,并在猪模型中植入后2小时成功监测上升和下降血糖。然而,随着注射部位愈合的降低传感器附近的组织氧水平阻止了体内长期传感器功能(即30天)。该工作研究了硅氧烷甲基丙烯酸硅烷酯,3- [TRIS(三甲基硅氧烷)甲硅烷基]丙基丙烯酸酯(TRIS)和N,N-二甲基丙烯酰胺(DMA)以产生杂化无机 - 有机互通网络水凝胶(IPNS)。使用顺序聚合方法制造IPN。 50:50 V:V%TRIS:制造含有苯吡啶氧指示剂的DMA水凝胶。然后将该第一网络浸泡在DMA均聚物前体中过夜,在整个第一网络中光聚合,并在PBS中水合。与PhEMA相比,船尾活氧扩散动力学(发光寿命)通过IPN表示通过IPN的氧气渗透率增加300%。另外,我们在将类似的葡萄糖输送到PhEMA凝胶保持相似的葡萄糖输送(Dllucose = 3.6×10 -7cm2 / s),我们具有增强的凝胶水合。含有葡萄糖氧化酶的微米瘤的引入表明在体外对血糖和神经血糖范围内的葡萄糖的光学响应,表明这些凝胶的潜力作为葡萄糖生物传感器。正在进行的努力包括将动态范围扩展到高血糖区域中,并评估IPN的体内性能作为猪传感器(仅限磷光体)和葡萄糖传感器(IPN微型复合材料)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号