首页> 外文会议>International Teletraffic Congress >Coexistence of Shared-Spectrum Radio Systems through Medium Access Pattern Learning using Artificial Neural Networks
【24h】

Coexistence of Shared-Spectrum Radio Systems through Medium Access Pattern Learning using Artificial Neural Networks

机译:利用人工神经网络通过中途访问模式学习共享 - 光谱无线电系统的共存

获取原文

摘要

Spectrum scarcity requires novel approaches for sharing frequency resources between different radio systems. Where coordination is not possible, intelligent approaches are needed, allowing a novel “secondary” system to access unused resources of a legacy (primary) system without requiring modifications of this primary system. Machine Learning is a promising approach to recognize patterns of the primary system and adapt the channel access accordingly. In this contribution we investigate the capability of Feed-Forward Deep Learning and Long Short Term Memory (LSTM) Recurrent Neural Networks (RNNs) to detect communication patterns of the primary user. Therefore we take the example of a new aeronautical system (LDACS) coexisting with three different systems. Firstly the coexistence with the Distance Measurement Equipment (DME) providing a deterministic interference to the secondary user and secondly with two synthetic channel access patterns, realized by a 2-state Markov model, modeling a bursty channel access behavior, as well as through a sequential channel access model.It can be shown that the Markov property of a Gilbert-Elliot channel model limits the predictability; nonetheless, we show that the model characteristics can be fully learned, which could leverage the design of interference avoidance systems that make use of this knowledge. The determinism of DME allows an error-free prediction, and it is shown that the reliability of sequential access model prediction depends on the model’s parameter. The limits of Feed-Forward Deep Neural Networks are highlighted, and why LSTM RNNs are state-of-the-art models in this problem domain. We show that these models are capable of online learning, as well as of learning correlations over long periods of time.In the spirit of open science, the implementation files are made available in the conclusion.
机译:频谱稀缺需要用于在不同无线电系统之间共享频率资源的新方法。在无法协调不可能的情况下,需要智能方法,允许新颖的“二级”系统访问传统(主要)系统的未使用资源,而无需修改该主系统。机器学习是一种承诺的方法来识别主系统的模式并相应地调整信道访问。在这一贡献中,我们调查前馈深学习和长短期内存(LSTM)经常性神经网络(RNN)来检测主要用户的通信模式的能力。因此,我们采取了与三种不同系统共存的新航空系统(LDACS)的示例。首先,与距离测量设备(DME)共存,为辅助用户提供确定性干扰,其次是由两个状态马尔可夫模型实现的两个合成信道访问模式,建模突发信道访问行为,以及通过顺序频道访问模型。可以说明Gilbert-elliot频道模型的Markov属性限制了可预测性;尽管如此,我们表明可以完全学习模型特征,这可以利用利用这些知识的干扰避免系统的设计。 DME的确定性允许无差错的预测,并显示顺序访问模型预测的可靠性取决于模型的参数。突出显示前馈深神经网络的限制,为什么LSTM RNN是在此问题域中的最先进模型。我们表明这些模型能够在线学习,以及长时间的学习相关性。在开放科学的精神中,在结论中提供了实现文件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号