首页> 外文会议>AIAA computational fluid dynamics conference >Advanced Numerical Simulation of Mixing Hot Core and Cold Bypass Flow in Modern Propulsion Systems with Internal Lobed Forced Mixer
【24h】

Advanced Numerical Simulation of Mixing Hot Core and Cold Bypass Flow in Modern Propulsion Systems with Internal Lobed Forced Mixer

机译:内叶强制混合器在现代推进系统中混合热核与冷旁路流动的高级数值模拟

获取原文

摘要

The development of more efficient and environmentally friendly powerplants for air transportation is getting more and more challenging. Therefore a deep understanding of all components of an aeroengine is necessary to fulfill the increasing requirements. One of these components is the exhaust system, which is the focus in this study. The flow through the nozzle system with installed lobed forced mixer with complex scarfing is performed using the Favre-averaged Navier-Stokes equations, to investigate the mixing of the hot core and cold bypass streams behind the mixer. Simulating such highly anisothermal flows requires good heat-flux prediction. The widely used Eddy Diffusivity Model to close the turbulent heat-flux term in the energy equation requires the definition of a turbulent Prandtl number, which is commonly assumed to be constant. However, the turbulent Prandtl number is not constant in such flows and therefore the prediction of the turbulent heat-flux might be calculated incorrectly in some regions. Therefore, a differential model has been utilized to overcome the dilemma defining a turbulent Prandtl number and to directly solve for the turbulent heat-flux. The model has been implemented in the open source software OpenFOAM and the results are compared to simulations using the Eddy Diffusivity Model with different turbulent Prandtl numbers. The resulting total temperature contours at the nozzle exit are compared to experimental temperature measurements. Furthermore, nozzle performance parameters are calculated to quantify the influence of the models.
机译:开发用于航空运输的更高效,更环保的动力装置变得越来越具有挑战性。因此,有必要对航空发动机的所有组件有深入的了解,才能满足不断增长的要求。这些组件之一是排气系统,这是本研究的重点。使用Favre平均Navier-Stokes方程执行通过安装了带复杂火焰的叶片式强制混合器的喷嘴系统的流量,以研究混合器后面的热芯和冷旁路流的混合。模拟如此高度的等温流动需要良好的热通量预测。广泛使用的涡流扩散率模型来关闭能量方程中的湍流热通量项,需要定义湍流普朗特数,该数通常被假定为常数。但是,湍流的普朗特数在这样的流动中不是恒定的,因此在某些区域中湍流通量的预测可能不正确。因此,已经利用微分模型来克服定义湍流普朗特数的难题,并直接求解湍流热通量。该模型已在开源软件OpenFOAM中实现,并将结果与​​使用具有不同湍流Prandtl数的涡流扩散率模型的仿真进行了比较。将在喷嘴出口处得到的总温度轮廓与实验温度测量值进行比较。此外,计算喷嘴性能参数以量化模型的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号