首页> 外文会议>IEEE Nanotechnology Materials and Devices Conference >Response of a Memristive Biomembrane and Demonstration of Potential Use in Online Learning
【24h】

Response of a Memristive Biomembrane and Demonstration of Potential Use in Online Learning

机译:留念生物膜的响应和在线学习中潜在使用的展示

获取原文

摘要

The pervasive von Neumann architecture uses complex processor cores and sequential computation. In contrast, the brain is massively parallel and highly efficient, owing to the ability of the neurons and synapses to store and process information simultaneously and to adapt according to incoming information. These features have motivated researchers to develop a host of brain-inspired computers, devices, and models, collectively referred to as neuromorphic computing systems. The quest for synaptic materials capable of closely mimicking biological synapses has led to an alamethicin-doped, synthetic biomembrane with volatile memristive properties which can emulate key synaptic functions to facilitate learning and computation. In contrast to its solid-state counterparts, this two-terminal, biomolecular memristor features similar structure, switching mechanisms, and ionic transport modality as biological synapses while consuming considerably lower power. To use the device as a circuit element, it is important to understand its response to different kinds of input signals. Here we develop a simplified closed form analytical solution based on the underlying state equations for pulse and sine wave inputs. A Verilog-A model based on Runge-Kutta method was developed to incorporate the device in a circuit simulator. Finally, the paper demonstrates possible applications for short- and long-term learning using its unique volatile memristive properties.
机译:普遍的von neumann架构使用复杂的处理器核和顺序计算。相反,由于神经元和突触同时存储和处理信息的能力并根据传入信息来适应信息,因此大脑是大规模的平行和高效的。这些特征具有激励的研究人员,开发了一系列脑激发的计算机,设备和模型,集体称为神经形态计算系统。对能够密切模仿生物突触的突触材料的任务导致了一种具有挥发性膜的合成生物膜,其可以模拟关键突触功能以促进学习和计算。与其固态对应物相比,该双端子,生物分子膜具有类似的结构,切换机构和离子运输方式作为生物突触,同时消耗得显着较低的功率。要使用该设备作为电路元件,重要的是要了解其对不同类型的输入信号的响应。在这里,我们基于脉冲和正弦波输入的底层状态方程式开发了简化的封闭形式分析解决方案。开发了一个基于Runge-Kutta方法的Verilog-A模型,以将设备包含在电路模拟器中。最后,本文展示了使用其独特的挥发性忆故物业的短期和长期学习的可能应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号