首页> 外文会议>IEEE/ACM International Conference on Cyber-Physical Systems >Co-Regulation of Computational and Physical Effectors in a Quadrotor Unmanned Aircraft System
【24h】

Co-Regulation of Computational and Physical Effectors in a Quadrotor Unmanned Aircraft System

机译:四轮车无人机系统中计算和物理效应的共调整

获取原文

摘要

Traditional control strategies rely on real-time computer tasks executing in fixed intervals providing periodic sampling upon which discrete controllers are designed. But emerging trends challenge this fixed resource allocation strategy by sampling at the "right" time rather than at fixed intervals. We propose a strategy in which a model representing the sampling rate is augmented to the state-space model of a quadrotor unmanned aircraft system, coupled controllers are designed for this holistic system, and computational and physical effectors are co-regulated in response to system performance. We investigate a new discrete-time-varying control strategy by gain scheduling a discrete linear quadratic regulator controller at a series of sampling rates, and co-regulating the sampling rates using a cyber controller whose gains are optimized via a strategic cost function. We then show step responses of the quadrotor to demonstrate how rapid changes in physical system gain at discrete sampling rates negatively impacts system performance. To solve this we introduce a new cyber control strategy that reduces these negative impacts and show how the response can be improved. Since most multicopters employ waypoint tracking planning and guidance, we also evaluate our strategy by assessing performance of the quadrotor in following a waypoint trajectory giving a much better indication of how a control strategy affects mission performance. We develop cyber-physical metrics for assessing waypoint following performance and use them to improve controller design. Results show that our proposed coupled cyber-physical system model and controller can provide physical system performance similar to fixed-rate optimal control strategies but with less control effort and much less computational utilization. Our strategy allows cyber and physical resources to be dynamically allocated to system demands as needed.
机译:传统的控制策略依赖于实时计算机任务,以固定间隔执行,提供定期采样,在哪些离散控制器上进行设计。但新兴趋势通过在“正确的”时间而不是固定间隔时采样来挑战这一固定资源分配策略。我们提出了一种策略,其中代表采样率的模型增强到四轮车无人机系统的状态空间模型,耦合控制器设计用于该整体系统,并且计算和物理效应响应于系统性能而共同调节。我们通过在一系列采样率下调度离散的线性二次调节器控制器来调度新的离散 - 时变控制策略,并使用一个通过战略成本函数进行优化的网络控制器共同调节采样率。然后,我们展示了四轮压力机的步骤响应,以展示在离散采样率下的物理系统增益的快速变化对系统性能产生负面影响。为了解决这个问题,我们介绍了一种新的网络控制策略,可以减少这些负面影响,并展示如何改善响应。由于大多数多种多数器雇用航点跟踪规划和指导,我们还通过评估四足电池的性能来评估我们的策略,以便在路点轨迹中提供更好的指示控制策略如何影响任务性能的方式。我们开发网络物理度量标准,用于评估性能后的航点,并使用它们来提高控制器设计。结果表明,我们提出的耦合网络 - 物理系统模型和控制器可以提供类似于固定速率最佳控制策略的物理系统性能,但控制力较少,计算利用率远低得多。我们的策略允许根据需要动态地分配网络和物理资源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号