首页> 外文会议>ASME international design engineering technical conferences;Computers and information in engineering conference;Design automation conference >STOCHASTIC REASSEMBLY FOR MANAGING THE INFORMATION COMPLEXITY IN MULTILEVEL ANALYSIS OF HETEROGENEOUS MATERIALS
【24h】

STOCHASTIC REASSEMBLY FOR MANAGING THE INFORMATION COMPLEXITY IN MULTILEVEL ANALYSIS OF HETEROGENEOUS MATERIALS

机译:异质材料多级分析中的随机信息随机性

获取原文
获取外文期刊封面目录资料

摘要

Efficient and accurate analysis of materials behavior across multiple scales is critically important in designing complex materials systems with exceptional performance. For heterogeneous materials, apparent properties are typically computed by averaging stress-strain behavior in a statistically representative cell. To be statistically representative, such cells must be larger and are often computationally intractable, especially with standard computing resources. In this research, a stochastic reassembly approach is proposed for managing the information complexity and reducing the computational burden, while maintaining accuracy, of apparent property prediction of heterogeneous materials. The approach relies on a hierarchical decomposition strategy that carries the materials analyses at two levels, the RVE (representative volume element) level and the SVE (statistical volume element) level. The hierarchical decomposition process uses clustering methods to group SVEs with similar microstructure features. The stochastic reassembly process then uses t-testing to minimize the number of SVEs to garner their own apparent properties and fits a random field model to high-dimensional properties to be put back into the RVE. The RVE thus becomes a coarse representation, or "mosaic," of itself. Such a mosaic approach maintains sufficient microstructure detail to accurately predict the macro-property but becomes far cheaper from a computational standpoint. A nice feature of the approach is that the stochastic reassembly process naturally creates an apparent-SVE property database. Thus, material design studies may be undertaken with SVE- apparent properties as the building blocks of a new material's mosaic. Some simple examples of possible designs are shown. The approach is demonstrated on polymer nanocomposites.
机译:在设计具有卓越性能的复杂材料系统时,跨多个规模的材料行为的高效,准确的分析至关重要。对于异质材料,通常通过对统计上具有代表性的单元格中的应力-应变行为求平均来计算表观特性。为了在统计上具有代表性,此类单元必须更大并且通常在计算上难以处理,尤其是在使用标准计算资源的情况下。在这项研究中,提出了一种随机重组方法来管理信息的复杂性并减少计算负担,同时又能保持异质材料的表观特性预测的准确性。该方法依赖于分层分解策略,该策略在两个级别上进行了材料分析,即RVE(代表体积元素)级别和SVE(统计体积元素)级别。分级分解过程使用聚类方法将具有相似微观结构特征的SVE分组。然后,随机重组过程使用t检验来最小化SVE的数量,以获取其自身的表观特性,并将随机字段模型与高维特性拟合,以放回到RVE中。因此,RVE成为其自身的粗略表示或“马赛克”。这种镶嵌方法可保持足够的微观结构细节,以准确地预测宏观属性,但从计算角度来看,其价格要便宜得多。该方法的一个很好的功能是,随机重组过程自然会创建一个表观SVE属性数据库。因此,可以进行具有SVE表观特性的材料设计研究,将其作为新材料镶嵌的基础。显示了一些可能的设计的简单示例。该方法已在聚合物纳米复合材料上得到证明。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号