首页> 外文会议>IAC;International Astronautical Congress >THERMAL DESIGN FOR THE CYCLIC WORKING COMPONENT IN SPACECRAFT USING THE SOLID THERMAL BUFFER MASS AS A THERMAL CAPACITOR
【24h】

THERMAL DESIGN FOR THE CYCLIC WORKING COMPONENT IN SPACECRAFT USING THE SOLID THERMAL BUFFER MASS AS A THERMAL CAPACITOR

机译:固体热缓冲质量作为热电容器的航天器循环工作部件的热设计

获取原文

摘要

Some electrical components in spacecraft operate in cyclic manner. The duty phase of the components isgenerally short compared to the whole period of the cycle. The component heats up with operation and itstemperature hits the highest peak at the end of the duty phase due to the heat dissipation. During the off-duty phasethe component temperature continues to fall until the next sortie. There are the required temperature limits in thecomponent thermal design. Because the highest temperature should not exceed the maximum limit the radiator isdesigned its size to emit enough heat into the space. When the cooling down temperature reaches the minimum limitthe extra heater power is required to compensate the energy loss from the radiator. Although the high heat dissipatingcomponent working in short duty the radiator should be designed for the peak temperature and then it leads the oversizedarea. It affects not only the system size, mass and cost by itself but also the spacecraft power system due to theheater power increment. To reduce the impact on the system design the solid thermal buffer mass (TBM) as athermal capacitance installed between the component and the radiator is a good recommendation. The TBMaccumulates the instantly generated heat and releases the thermal energy moderately, and it makes the time varyingtemperature profile damped down. In this study the mass or thermal capacity of the TBM is optimized to meet thedesign temperature limits of the component based on the mathematical analysis. The linear approximation method issuggested to solve the nonlinear unsteady energy equations caused by 4th order radiation term. As a result thecompensation heater duty cycle lessens compared to original design without TBM.
机译:航天器中的某些电子组件以循环方式运行。组件的工作阶段是 与周期的整个周期相比,通常较短。组件随着运行而变热,其 由于散热,温度在工作阶段结束时达到最高峰值。在下班阶段 组件温度持续下降,直到下一次出动为止。在规定的温度范围内 元件散热设计。由于最高温度不应超过散热器的最高温度 设计其尺寸以将足够的热量散发到空间中。冷却温度达到下限时 需要额外的加热器功率来补偿散热器的能量损失。虽然高散热 短期工作的散热器组件应针对峰值温度进行设计,然后导致尺寸过大 区域。它不仅影响系统的大小,质量和成本,而且还影响航天器的动力系统。 加热器功率增量。为了减少对系统的影响,将固态热缓冲质量(TBM)设计为 建议在组件和散热器之间安装热电容。隧道掘进机 累积即时产生的热量并适度释放热能,这使时间有所变化 温度曲线衰减。在这项研究中,TBM的质量或热容量经过优化,可以满足 根据数学分析,设计组件的温度极限。线性逼近方法是 建议解决由四阶辐射项引起的非线性非稳态能量方程。结果是 与没有TBM的原始设计相比,补偿加热器的占空比降低了。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号