首页> 外文会议>ASME international conference on ocean, offshore and arctic engineering >PREDICTIONS OF ARMOUR WIRE BUCKLING FOR A FLEXIBLE PIPE UNDER COMPRESSION, BENDING AND EXTERNAL PRESSURE LOADING
【24h】

PREDICTIONS OF ARMOUR WIRE BUCKLING FOR A FLEXIBLE PIPE UNDER COMPRESSION, BENDING AND EXTERNAL PRESSURE LOADING

机译:柔性管在压缩,弯曲和外部压力载荷下的铠装线屈曲预测

获取原文

摘要

During installation and operation a flexible pipe may be subjected to high compressive forces, high cyclic curvatures and external pressures leading to high reverse end-cap loads. Under such loading conditions, which occur particularly in the touchdown region for deep water applications, the limiting condition for the flexible pipe can be the compressive stability of the tensile armour wires. Two potential instability modes are possible: radial mode (birdcaging) and lateral mode (lateral wire disorganization). Previous work on the subject has established the key factors which influence the onset of each buckling mode [1],[2],[3] and [4].In order to ensure the feasibility of flexible designs for applications with increasing water depth, it is important to improve the knowledge of the mechanisms which can lead to instability of armour wires and enhance the ability to predict with greater assurance, the particular conditions which increase the risk of wire instability.The focus of this work is the comparison of finite element prediction of radial buckling (birdcaging) with physical testing results under loading states that lead a pipe to birdcaging failure.The numerical model incorporates all tensile armor wires and their interactions with each other and adjacent layers. The outer sheath and reinforcing tape layers are explicitly represented, while the inner layers of the pipe (pressure armour and carcass sheath) are idealized using a homogeneous representation. The model also incorporates the effects of manufacturing pre-tension and hoop strength in the anti-birdcaging tape layers which are critical determinants for the onset of buckling.A key aspect of the method presented is the means by which the loading is applied. Specifically, the modeling handles the simultaneous and controlled application of end rotations, axial compression and radial resistance of the tapes through to the point of tape failure, pipe ovalisation and subsequent radial displacement and buckling of individual wires.In summary, in this paper a solid modeling approach is presented, which is compared with full a scale sample test data, that enables the simulation of a flexible pipe undergoing large combined compression, curvatures and pressure loading.
机译:在安装和操作过程中,挠性管可能会承受较高的压力,较高的循环曲率和外部压力,从而导致较高的反向端盖载荷。在这种载荷条件下,特别是在深水应用的着陆区域中,挠性管的局限性条件可能是拉伸铠装线的压缩稳定性。两种潜在的不稳定性模式是可能的:径向模式(鸟笼式)和横向模式(横向导线混乱)。关于该主题的先前工作已经确定了影响每种屈曲模式开始的关键因素[1],[2],[3]和[4]。为了确保针对水深增加的应用进行灵活设计的可行性,重要的是要提高对可能导致铠装线不稳定性的机理的了解,并增强具有更大保证性的预测能力,这些条件会增加导线不稳定性的风险。这项工作的重点是有限元的比较在导致管道导致鸟笼失效的载荷状态下,通过物理测试结果预测径向屈曲(鸟笼)。该数值模型包含了所有拉伸铠装线及其相互之间以及与相邻层之间的相互作用。外护套和加强带层被明确表示,而管道的内层(压力铠装和胎体护套)则使用均质表示来理想化。该模型还将防鸟笼胶带层中制造预张力和环向强度的影响结合在一起,这是导致屈曲开始的关键决定因素。所提出方法的一个关键方面是施加载荷的方法。具体而言,该建模处理了胶带的端部旋转,胶带的轴向压缩和径向阻力的同时且受控的应用,直到胶带失效,管道椭圆化以及随后的单个导线径向位移和屈曲。提出了一种建模方法,将其与完整规模的样本测试数据进行了比较,从而可以对承受大的组合压缩,曲率和压力载荷的挠性管进行仿真。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号