首页> 外文会议>Annual International Pittsburgh Coal Conference >ADVANCES IN COAL ANALYSES AND SIMULATIONS 1989-2012
【24h】

ADVANCES IN COAL ANALYSES AND SIMULATIONS 1989-2012

机译:1989-2012年煤炭分析和模拟研究的进展

获取原文

摘要

There are periodic publications that address advances in coal science. This continues that fine tradition and focuses onthe author’s views of the more significant advances in analytic techniques (chemical and physical) and molecularbased simulation that has expanded our ability to quantify coal properties and explore behavior. During the last twodecades (plus a few years) the rationalization of coal chemistry has been considerably expanded by: the additionalquantification of solid state 13C NMR, the quantification of the lattice fringe views from coal HRTEM micrographs,evaluation of molecular weight distribution by laser desorption ionization (LDI) mass spectroscopy (MS), and theinclusion of structural diversity via the Fourier transform ion cyclotron resonance (FT-ICR) MS approach for coalextracts. Specifically, the Solum et al. combined dipolar dephasing coupled with CPMAS NMR to produce 12 carbonstructural parameters was a significant advance in enhancing comparison of coals structural features. With latticefringe extraction techniques coal HRTEM micrographs went form a hazy micrograph to the elucidation of thedistribution of the aromatic lattice fringes, their size, orientation, and clustering across the rank range in coal products.Laser desorption ionization mass spectroscopy has yielded further insights into the molecular weight distributions ofcoal. Electrospray ionization (ESI) FT-ICR MS is expanding our understanding a coals’ compositional and structuraldiversity by directly determining the elemental compositions of the ions of coal extracts (by accurate massmeasurement alone) and capturing/visualizing the high resolution MS data with Kendrick mass defect plots vs.nominal Kendrick mass plots, heteroatom class consideration, color isoabundance plots, and van Krevelen diagrams.Physical properties and coal behavior are also further quantified by HRTEM lattice fringe images, porosity evaluationthrough small angle X-ray (or neutron) scattering (SAXS/SANS) approaches, and X-ray computed tomographyevaluations. Specifically the HRTEM lattice fringes shows the distribution of the stacking and orientation of aromaticfringes aiding quantification of aromatic arrangements on the atomic scale. Through SAXS and SANS, particularly atU.S. National Laboratory user facilities, with contrast matching approaches the behavior of coal with gases andsolvents has been elucidated. For example the pore filling of CO_2 in sequestration related studies has been captured ashas changes to the pore structure with in-situ devolatilization or gasification. X-ray computed tomography has allowedthe non-destructive evaluation of the physical structure of coal with resolutions in the 35μm range with the promise ofsignificantly higher resolution. This has permitted 3D evaluations of: the cleat structure, quantification of coalswelling/contraction with addition/removal of gases and solvents, determination and anisotropy of strains, kinetics ofgas uptake, coking transitions, and impacts of microwave exposure on the cleat network.Analytical advances have resulted in the ability to quantify coal data and further constrain molecular representations.Restricting models to the average NMR parameters, while capturing a portion of the structural diversity has resulted innew computer aided tools for structure creation and evaluation. Several tools have evolved such as SIGNATURE(Stochastic generation), computer aided molecular design, with advances in the evaluation of the resulting structure(POR-pore size distribution), NMR evaluations, pair distribution modeling, etc. Building on these approaches thestate-of-the-art couples HRTEM analysis (diversity of fringe lengths and orientations) to directly construct constrainedmolecular representations (Fringe3D) which can be manipulated in 3D structures further constrained by: multipleNMR parameters, FT-ICR data (diversity of heteroatom classes for example), SAXS and SANS data for pore sizedistributions (limited to a limited extent by the scale of the representation). Automated approaches have expanded thescale of representation with greater accuracy and improved ease with improvements in communication of structuralinformation via 3D and 2D lattice structures. Thus, there has been increased utility and applicability for molecularmodeling and analytical advanced to the rationalization of coal science.
机译:有定期出版物涉及煤炭科学的进展。这延续了优良传统,并专注于 作者对分析技术(化学和物理)以及分子技术的更重大进展的看法 基于仿真的模型,扩展了我们量化煤炭特性和探索行为的能力。在最后两个 几十年来(加上数年),煤化学的合理化已通过以下方式得到了极大扩展: 固态13C NMR的定量,煤HRTEM显微照片的晶格条纹视图的定量, 激光解吸电离(LDI)质谱(MS)评估分子量分布,以及 煤的傅里叶变换离子回旋共振(FT-ICR)MS方法包含结构多样性 提取物。具体来说,Solum等。结合偶极相移并结合CPMAS NMR产生12个碳 结构参数是在加强煤结构特征比较方面的重大进步。带格子 条纹提取技术煤HRTEM显微图由朦胧显微图阐明了 煤产品中芳族晶格条纹的分布,它们的大小,取向和聚集在整个等级范围内。 激光解吸电离质谱技术已进一步了解了其分子量分布。 煤炭。电喷雾电离(ESI)FT-ICR MS正在扩展我们对煤炭成分和结构的理解 通过直接确定煤提取物离子的元素组成(通过准确质量)来实现多样性 单独测量)并使用Kendrick质量缺陷图vs.捕获/可视化高分辨率MS数据 名义Kendrick质量图,杂原子类别注意事项,颜色等丰度图和van Krevelen图。 通过HRTEM晶格条纹图像,孔隙率评估,还可以进一步量化物理性质和煤的行为。 通过小角度X射线(或中子)散射(SAXS / SANS)方法,以及X射线计算机断层扫描 评估。具体来说,HRTEM晶格条纹显示出芳族化合物的堆积和取向分布 条纹有助于在原子尺度上量化芳香族化合物的排列。通过SAXS和SANS,尤其是在 美国国家实验室的用户设施,采用对比度匹配的方法来分析煤与气体的行为,以及 溶剂已经阐明。例如,在与固存相关的研究中,CO_2的孔填充被捕获为 原位挥发或气化会改变孔结构。 X射线计算机断层扫描已允许 煤物理结构的无损评估,分辨率在35μm范围内,有望实现 明显更高的分辨率。这样就可以对以下方面进行3D评估:割理结构,煤的定量 溶胀/收缩,添加/除去气体和溶剂,确定和各向异性,应变动力学 气体吸收,焦化转变以及微波暴露对夹板网络的影响。 分析的进步使得能够量化煤数据并进一步限制分子表示。 将模型限制为平均NMR参数,同时捕获部分结构多样性,从而导致 用于结构创建和评估的新的计算机辅助工具。几种工具已经发展,例如SIGNATURE (随机生成),计算机辅助分子设计以及对所得结构的评估方面的进步 (POR孔径分布),NMR评估,成对分布建模等。在这些方法的基础上, 最先进的情侣HRTEM分析(条纹长度和方向的多样性)可直接构建受约束的 可以在3D结构中操纵的分子表示形式(Fringe3D),进一步受以下因素约束: NMR参数,FT-ICR数据(例如,杂原子类别的多样性),孔径的SAXS和SANS数据 分布(在一定程度上受制于代表比例)。自动化方法扩展了 通过改进结构的通信,可以更精确地表示比例,并提高易用性 通过3D和2D晶格结构获取信息。因此,已经增加了分子的实用性和适用性。 建模和分析已推进煤炭科学的合理化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号