首页> 外文会议>Annual AIAA/USU conference on small satellites >A Stellar Gyroscope for Small Satellite Attitude Determination
【24h】

A Stellar Gyroscope for Small Satellite Attitude Determination

机译:用于小型卫星姿态确定的恒星陀螺仪

获取原文

摘要

A stellar gyroscope is a star based attitude propagator that is capable of propagating a spacecraft’s attitude in threedegrees of freedom by tracking the motion of the stars in an imager's field of view. The modeling and algorithmdevelopment has been done by the Space Systems Laboratory at the University of Kentucky. This paper discusses arealization of the stellar gyroscope concept on a CubeSat attitude determination and control system (ADCS)designed by SSBV Space & Ground Systems UK. The stellar gyroscope can be used to measure attitude changesfrom a known initial condition without drift while sufficient stars are common across frames, because absoluteattitude changes are measured and not angular rates. Algorithms to perform the star detection, correspondence, andattitude propagation are presented in this paper. The Random Sample Consensus (RANSAC) approach is applied tothe correspondence problem which is challenging due to spurious false-star detections, missed stars, stars leaving thefield of view, and new stars entering the field of view. The CubeSat attitude determination and control systemdescribed in this paper uses a stellar gyroscope, implemented using inexpensive optics and sensor, to augment aMEMS gyroscope attitude propagation algorithm to minimize drift in the absence of an absolute attitude sensor. TheMEMS device provides the high frequency measurement updates required by the control system, and the stellargyroscope, at a lower update rate, resets the drift accumulated in the MEMS inertial gyroscope integrator. This ineffect could allow sun-sensing satellites to maintain a high quality attitude estimate in eclipse, where the sun sensorscan no longer contribute in absolute attitude estimates. This paper describes an algorithm to solve the relativeattitude problem by identifying the change in attitude between two star field images. RANSAC is applied to solvethe correspondence problem in the presence of false star detections and misses. The camera and attitudedetermination and control system are described, prototype hardware is used to generate night-sky datasets of knownattitude changes to demonstrate the performance of the algorithm, and a simulation is developed to evaluate thestellar gyroscope’s ability in limiting the drift of an attitude propagator based on MEMS gyroscope rates. TheCubeSat ADCS system developed by SSBV is an experiment on TechDemoSat-1, to be launched in early 2013.
机译:恒星陀螺仪是一种基于恒星的姿态传播器,能够在三个方向上传播航天器的姿态 通过跟踪成像器视场中恒星的运动来确定自由度。建模与算法 肯塔基大学的空间系统实验室已经完成了开发工作。本文讨论了 CubeSat姿态确定和控制系统(ADCS)上实现恒星陀螺仪概念 由英国SSBV太空和地面系统公司设计。恒星陀螺仪可用于测量姿态变化 从已知的初始状态开始,没有漂移,而足够的恒星在整个帧中很常见, 测量的是姿态变化,而不是角速度。执行恒星检测,对应和计算的算法 本文介绍了姿态传播。随机样本共识(RANSAC)方法适用于 由于虚假的假恒星探测,错过的恒星,离开恒星的恒星而引起的通信问题极具挑战性 视野,以及进入视野的新星。 CubeSat姿态确定和控制系统 本文所描述的使用恒星陀螺仪(通过廉价的光学器件和传感器实现)来增强 MEMS陀螺仪姿态传播算法可在没有绝对姿态传感器的情况下最大程度地减少漂移。这 MEMS装置可提供控制系统和恒星所需的高频测量更新 陀螺仪以较低的更新速率重置MEMS惯性陀螺仪积分器中累积的漂移。这个在 效应可能使阳光感应卫星在日食中保持高质量的姿态估计,而阳光感应器 不能再对绝对态度做出贡献。本文介绍了一种解决相对误差的算法 通过识别两个星场图像之间的姿态变化来确定姿态问题。应用RANSAC解决 存在虚假恒星检测和遗漏的对应问题。相机和态度 描述了确定和控制系统,使用原型硬件生成已知的夜空数据集 姿态变化以证明算法的性能,并开发了一个仿真来评估算法 恒星陀螺仪基于MEMS陀螺仪速率限制姿态传播器漂移的能力。这 由SSBV开发的CubeSat ADCS系统是TechDemoSat-1的实验,将于2013年初启动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号