【24h】

ANALYSIS OF THE AEROELASTIC DYNAMICS OF WIND-TURBINE BLADES

机译:涡轮叶片气动弹性动力学分析

获取原文

摘要

Reducing the uncertainties related to blade dynamics by the improvement of the quality of numerical simulations of the fluid structure interaction process is a key for a breakthrough in wind-turbine technology. A fundamental step in that direction is the implementation of aeroelastic models capable of capturing the complex features of innovative prototype blades, so they can be tested at realistic full-scale conditions with a reasonable computational cost. We make use of a code based on a combination of two advanced numerical models implemented in a parallel HPC supercomputer platform: First, a model of the structural response of heterogeneous composite blades, based on a variation of the dimensional reduction technique proposed by Hodges and Yu. This technique has the capacity of reducing the geometrical complexity of the blade section into a stiffness matrix for an equivalent beam. The reduced 1-D strain energy is equivalent to the actual 3-D strain energy in an asymptotic sense, allowing accurate modeling of the blade structure as a 1-D finite-element problem. This substantially reduces the computational effort required to model the structural dynamics at each time step. Second, a novel aerodynamic model based on an advanced implementation of the BEM (Blade Element Momentum) Theory; where all velocities and forces are re-projected through orthogonal matrices into the instantaneous deformed configuration to fully include the effects of large displacements and rotation of the airfoil sections into the computation of aerodynamic forces. This allows the aerodynamic model to take into account the effects of the complex flexo-torsional deformation that can be captured by the more sophisticated structural model mentioned above. In this presentation, we report some recent results we have obtained applying our code to full-scale composite laminate wind-turbine blades, analyzing the fundamental vibrational modes and the stress load in normal operational conditions.
机译:通过提高流体结构相互作用过程数值模拟的质量来减少与叶片动力学相关的不确定性,这是风力涡轮机技术突破的关键。朝这个方向迈出的基本一步是实现能够捕捉创新原型叶片复杂特征的气动弹性模型,因此可以在实际的满量程条件下以合理的计算成本对它们进行测试。我们使用基于在并行HPC超级计算机平台中实现的两个高级数值模型的组合的代码:首先,基于Hodges和Yu提出的降维技术的变体,对异质复合叶片的结构响应进行建模。 。该技术具有将叶片部分的几何复杂度降低为等效梁的刚度矩阵的能力。减小的一维应变能在渐近意义上等效于实际3-D应变能,从而允许将叶片结构作为一维有限元问题进行精确建模。这大大减少了在每个时间步对结构动力学进行建模所需的计算量。第二,基于BEM(叶片元素动量)理论的高级实现的新型空气动力学模型;通过正交矩阵将所有速度和力重新投影为瞬时变形构型,以将大位移和翼型截面旋转的影响完全计入气动力的计算中。这使得空气动力学模型能够考虑到复杂的挠曲扭转变形的影响,而上述复杂的挠曲变形可以被上述更为复杂的结构模型捕获。在此演示文稿中,我们报告了一些最新的结果,这些结果是将代码应用到全尺寸复合材料层压风轮机叶片时获得的,并分析了正常运行条件下的基本振动模式和应力负荷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号