首页> 外文会议>European Conference on Fracture >The Role of Phonon Emission in Dynamic Crack Propagation in Brittle Crystals
【24h】

The Role of Phonon Emission in Dynamic Crack Propagation in Brittle Crystals

机译:声子发射在脆性晶体动态裂纹扩展中的作用

获取原文

摘要

Dynamic cleavage fracture experiments of brittle single crystal silicon revealed several length scales of path and surface instabilities: macroscale path selection, mesoscale crack deflection, and nanoscale surface ridges. These phenomena cannot be predicted or explained by any of the continuum mechanics based equations of motion, as critical energy dissipation mechanisms associated with atomistic scale vibrations are not accounted for in the theories. Experimentally measured maximum crack speed, always lower than the theoretical limit, is another phenomenon that is as yet not well understood. The thermally activated phonon emission energy release rate (or heat) dissipated during dynamic crack propagation on several cleavage systems of brittle single crystal silicon was calculated by means of molecular dynamics atomistic computer simulations. The calculations yielded the anisotropic and velocity dependent thermal phonon emission energy release rate. This energy dissipation mechanism is considered a material property, which explained and rationalized the multi-scale surface and path instabilities phenomena obtained in the cleavage experiments. It also explained the inability of a crack to attain the theoretical limiting speed. It is therefore concluded that the phonon emission energy release rate constitutes an essential energy dissipation mechanism involving dynamic crack propagation and therefore, additional energy term was incorporated in Freund equation of motion. This term includes size effect associated with this dissipative mechanism.
机译:脆性单晶硅的动态劈裂断裂实验揭示了路径和表面不稳定性的几种长度尺度:宏观尺度的路径选择,中尺度的裂纹挠度和纳米尺度的表面脊。这些现象无法通过任何基于连续力学的运动方程式进行预测或解释,因为理论中并未考虑与原子尺度振动相关的关键能量耗散机制。实验测得的最大裂纹速度始终低于理论极限,这是另一种尚未得到充分理解的现象。通过分子动力学原子计算机模拟,计算了在动态裂纹扩展过程中在脆性单晶硅的几个解理系统上耗散的热活化声子发射能量的释放速率(或热量)。计算得出各向异性和速度相关的热声子发射能量释放速率。这种能量耗散机制被认为是一种材料特性,它可以解释和合理化劈裂实验中获得的多尺度表面和路径不稳定性现象。它还解释了裂纹无法达到理论极限速度的原因。因此可以得出结论,声子发射能量的释放速率构成了涉及动态裂纹扩展的基本能量耗散机制,因此,在弗氏运动方程中加入了附加的能量项。该术语包括与此耗散机制相关的尺寸效应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号