首页> 外文会议>AIAA/3AF international space planes and hypersonic systems and technologies conference >Focusing-schlieren Visualization in Direct-connect Dual-mode Scramjet
【24h】

Focusing-schlieren Visualization in Direct-connect Dual-mode Scramjet

机译:直接连接双模超燃冲压发动机中的聚焦焦点可视化

获取原文

摘要

Schlieren imaging has high sensitivity for density gradient in a flow field, and easily captures not only shock and expansion waves but also turbulent structures in the flow field. The conventional schlieren imaging, however, cannot capture clearly them in direct-connect supersonic combustor tests with long duration, because the severe temperature condition in the combustor locally changes the refractive index of the window glasses for optical access. The conventional schlieren technique is essentially sensitive to the entire region of the light path including the glasses. On the other hand, focusing-schlieren technique has narrow depth of focus. Therefore, the imaging is expected to avoid the thermal distortion of the glasses. In this work, we applied focusing-schlieren imaging to the supersonic combustion tests, and tried to clearly capture the flow features inside a dual-mode scramjet. The present system had about ± 5 mm depth of focus, and successfully visualized the flow field in the combustor, though the system sensitivity declined with the tunnel heating up. Combustion drastically changed the flow field inside the combustor, and induced volumetric expansion of fuel jet, resulting in pressure rise. Combustion-generated pressure rise pushed up the shock train up to the trilling edge of the ramp fuel injector. The system recorded two image pairs by using PIV system. These image pairs yielded the convection velocity of turbulent structures in the combustor.
机译:Schlieren成像对流场中的密度梯度具有很高的灵敏度,不仅可以轻松捕获流场中的冲击波和膨胀波,还可以轻松捕获流场中的湍流结构。然而,常规的Schlieren成像无法在长时间的直接连接超声速燃烧器测试中清晰地捕捉到它们,因为燃烧器中严酷的温度条件会局部改变用于光学通道的窗户玻璃的折射率。传统的纹影技术对包括眼镜的光路的整个区域基本敏感。另一方面,聚焦-纹影技术具有较窄的聚焦深度。因此,期望成像避免眼镜的热变形。在这项工作中,我们将聚焦schlieren成像应用于超音速燃烧测试,并试图清晰地捕获双模超燃冲压发动机内部的流动特征。本系统具有约±5 mm的焦深,并且成功地可视化了燃烧室中的流场,尽管系统的灵敏度随着隧道的升温而下降。燃烧极大地改变了燃烧器内部的流场,并引起了燃料喷射的体积膨胀,导致压力升高。燃烧产生的压力升高将冲击波推至斜坡燃料喷射器的颤动边缘。系统使用PIV系统记录了两个图像对。这些图像对产生了燃烧室中湍流结构的对流速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号