首页> 外文会议>World biomaterials congress >SpinoMimetic CryoSponges as advanced biomaterial archetypes for enhanced neuronal anchoring and support Achievement of maximal mechanotransduction via minimal functionalization and crosslinking
【24h】

SpinoMimetic CryoSponges as advanced biomaterial archetypes for enhanced neuronal anchoring and support Achievement of maximal mechanotransduction via minimal functionalization and crosslinking

机译:纺丝纤细的冷冻孔作为先进的生物材料原型,用于通过最小官能化和交联增强神经元锚固和支持最大机电机组的支持

获取原文

摘要

Introduction: Mechanical properties of a biomaterial scaffold play a definitive role in neuronal support, differentiation and even regeneration. To achieve neuromimetism, mechanotransduction through focused selection of biomaterials (including blends) require fine-tuning of their chemical morphology In this study, novel "SpinoMimetic CryoSponge Architectures" were developed employing various polyethylene glycol (PEG) derivatives (2kDa) with chitosan network for potential and enhanced axonal anchoring. Methods: Genipin-crosslinked chitosan/PEG cryosponges were fabricated via focused graded functionalization of methoxy-PEG (mPEG) and blending with chitosan to obtain chitosan-Wend-mPEG (CbPEG-OH), chitosan-Wend-mPEG-CHO (CbPEG-CHO), chitosan-Wend-mPEG-NH_2 (CbPEG-NH_2) and chitosan-bfend-mPEG-COOH (CbPEG-COOH). The scaffolds were developed via a unique concurrent blending-crosslinking-cryogelling technique followed by incubation at -20°C and finally thawing at room temperature. Results and discussion: Morphologically, 7.5mm diameter cylindrical CbPEG-OH, CbPEG-CHO, CbPEG-NH_2 and CbPEG-COOH cryosponges composed of macroporous (discontinuous), uniaxial macroporous (continuous), mesoporous (continuous) and microporous (continuous) channels, respectively, of varying surface areas. The matrix resilience of the hydrated samples (at 25% strain) ranged between 12.7-17.5% on a force-time scale. The mechanical properties of CbPEGs prepared were within the range of bkjmectianical matrix rigidity of the rat spinal tissue tested (nanotensile testing). The neuronal anchoring of PC12 cells on the scaffolds was deduced via a relationship between the inherent matrix resilience (R_m; %), surface area (Ap) and solution viscosity (q) of the SpinoMimetic CryoSponges. At constant base/conjugate polymer ratio: A_p-√η/R_m(Equation 1) A_p =p√η/R_m (Equation 2) where, p (m~4s~4/kg) is Mechano-Mesoporous Flow Coefficient (novel biomaterial coefficient) which is a function of end group functionality of the conjugate polymer and expresses the proliferation and diffusion behaviour of PC12 cells dependent on local cytomechanical signals. The mathematical propositions in terms of p explained the spatiotemporal evolution of the growth factor concentration and neuronal connectivity (CbPEG-CHO > CbPEG-OH > CbPEG-NH_2 > CbPEG-COOH). The neuronal anchoring performance of various cryosponges along with the energy relationships employing static lattice atomistic simulations (AMBER force field) demonstrated a significant role of torsional contributions arising from deviations from optimum dihedral angles as a function of degree of crosslinking. Conclusion: A novel relationship is hereby introduced for the prediction of behavior of axonal regeneration in response to substrate resilience, mechanical stress and topographic features of scaffolds with far reaching implications in spinal cord injury intervention.
机译:简介:生物材料脚手架的力学性能在神经元支撑,分化甚至再生中发挥着定义作用。为了实现神经元化,通过聚焦选择的生物材料(包括混合物)的机械调整需要微调其化学形态,在本研究中,采用各种聚乙二醇(PEG)衍生物(2KDA)与壳聚糖网络进行了新的“纺丝纤维纤维镜架构”进行壳聚糖网络进行潜力并增强了轴突锚定。方法:通过聚焦分级官能化的甲氧基 - PEG(MPEG)制造Genipin-Crosslind壳聚糖/ PEG Cryospongs,并与壳聚糖共混,得到壳聚糖 - Wend-MPEG(CBPEG-OH),壳聚糖 - Wend-MPEG-CHO(CBPEG-CHO ),壳聚糖 - Wend-MPEG-NH_2(CBPEG-NH_2)和壳聚糖-BFEND-MPEG-COOH(CBPEG-COOH)。支架通过独特的并发混合交联 - 交联 - 交联 - 冷冻机技术开发,然后在-20℃下孵育并在室温下解冻。结果与讨论:形态学,由大孔(不连续),单轴大孔(连续),中孔(连续)和微孔(连续)通道组成的75mm直径圆柱CBPEG-OH,CBPEG-CHO,CBPEG-NH_2和CBPEG-COOH Cryospongs,分别是不同的表面积。水合样品(25%菌株)的基质弹性在力 - 时尺度的范围为12.7-17.5%。制备的CBPEG的力学性质在测试的大鼠脊髓组织的Bkjmectiancix刚性范围内(纳米囊测试)。通过在纺丝纤维化纤维化圆锥的固有基质弹性(R_M;%),表面积(AP)和溶液粘度(Q)之间的关系来推导支架上PC12细胞的神经元锚固。在恒定基础/缀合物聚合物比率下:A_P-νη/ r_m(等式1)a_p =p√η/ r_m(等式2)其中,p(m〜4s〜4 / kg)是机械介孔流量系数(新型生物材料系数是缀合物聚合物的端部组官能团的函数,表达依赖于局部细胞学信号的PC12细胞的增殖和扩散行为。本文的数学命题解释了生长因子浓度和神经元连通性的时空演变(CBPEG-CHO> CBPEG-OH> CBPEG-NH_2> CBPEG-COOH)。各种Cryospongs的神经元锚固性能以及采用静态晶格原子模拟(琥珀色磁场)的能量关系展示了由于交联程度的偏离从最佳二对角角度而产生的扭转贡献的显着作用。结论:特此介绍了一种新的关系,用于预测轴心再生的行为,以响应衬底弹性,机械应力和支架的机械应力和脊髓损伤介入的影响深远。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号