首页> 外文会议>World biomaterials congress >Unravelling the binding energetics of a synthetic polymeric heparin antidote with heparin using isothermal titration calorimetry
【24h】

Unravelling the binding energetics of a synthetic polymeric heparin antidote with heparin using isothermal titration calorimetry

机译:使用等温滴定热量法解开合成聚合物肝素解毒剂的合成聚合物肝素的结合能量

获取原文

摘要

Background and Objective: To avert haemorrhage associated with heparin therapy, antidotes are required. Protamine sulphate (PS), a cationic peptide is used to reverse unfractionated heparins (UFH). PS electrostatically interacts with heparins to generate complexes devoid of anticoagulation. However, PS partially neutralizes anticoagulation of low molecular weight heparins (LMWHs) and is ineffective against fondaparinux. Understanding this clinical need, we developed a Universal Heparin Reversal Agent (UHRA) capable of reversing anticoagulation of all clinically available parenteral anticoagulants. UHRA has three components: hyperbranched polyglycerol core comprising heparin binding groups and methoxy polyethylene glycol (mPEG) chains emanating from the core. Using Isothermal titration calorimetry (ITC), we observed that both PS and UHRA bind to UFH, LMWHs and fondaparinux with micromoiar dissociation constant. This raises an important question: why UHRA is an efficient heparin antidote with minimal non-specific protein binding, while PS fails to reverse the anticoagulation effects of LMWHs and fondaparinux and binds to proteins in competitive media such as human blood. We hypothesize that the presence, density and length of mPEG chains in UHRA is crucial to attain maximum efficacy and minimal toxicity. In this study, we use ITC to demonstrate the structural superiority of UHRA in comparison to PS. Methods: UHRA was synthesized by anionic ring opening polymerization of glycidol and mPEG, post-modified with multifunctional tertiary amines to generate cationic groups. We synthesized UHRA with no mPEG chains (N-UHRA) to evaluate its crucial role in the design of UHRA. ITC experiments were performed on VP-ITC microcalorimeter. We titrated UHRA, N-UHRA and PS against UFH at varying salt concentrations. Activated partial thromboplastin time assay (aPTT) was performed in human platelet poor plasma (PPP) and anticoagulated human PPP respectively to assess biocomparibility and neutralization capability of antidotes. Results and Discussion: As anticipated, the binding affinity of antidotes to UFH decreased with increase in salt content in the buffer solution. Debye-huckel plot of association constant versus salt concentration showed linear relationship for both N-UHRA and PS. However, a deviation from Debye-Huckel plot (non-linearity) was observed in the binding between UFH and UHRA. The binding of UHRA to UFH is enthalpy driven, but the presence of mPEG chains acts as entropic bumper, reducing the binding affinity rapidly as the salt concentration increases in comparison to N-UHRA or protamine providing the required selectivity. We observed that the binding affinity of UHRA to UFH decrease with increase in temperature, and the complex formation becomes more exothermic. The linearity of enthalpy-entropy compensation plot, slope close to 1.0 reveals an exact compensation of enthalpy by entropy. The intrinsic anticoagulation effect exhibited by UHRA was mild compared to N-UHRA and PS. Also, UHRA completely neutralized UFH anticoagulation over a broad concentration ranging from 12.5 μg/mL to 200 μg/mL. On the other hand, protamine and N-UHRA failed to completely reverse anticoagulation effects of UFH and showed anticoagulation effect above 100 μg/mL. Conclusions: The nonspecific interactions of N-UHRA and PS to plasma proteins could be responsible for their intrinsic anticoagulation. This study shows that mPEG brush layer (entropic barrier) could reduce interactions of UHRA with plasma proteins and provide selectivity in binding. However, the entropic barrier of UHRA is overwhelmed in the presence of highly anionic, molecules like heparins making UHRA an ideal heparin antidote.
机译:背景和目的:避免与肝素治疗相关的出血,需要解毒剂。 protamine硫酸盐(ps),阳离子肽用于反转未分割的肝素(UFH)。 PS用肝素静电相互作用以产生缺乏抗凝的复合物。然而,PS部分中和低分子量肝素(LMWH)的抗凝,并且对Fordaparinux无效。理解这种临床需求,我们开发了一种能够逆转所有临床上可用的肠胃外抗凝血剂的肝素逆转剂(UHRA)。 UHRA有三种组分:超支化聚甘油核心,包括肝素结合基团和甲氧基聚乙二醇(MPEG)链从核心发出。使用等温滴定热量测定法(ITC),我们观察到PS和UHRA都与UFH,LMWHS和FordAparinux与微米解离常数结合。这提出了一个重要问题:为什么UHRA是具有最小的非特异性蛋白质结合的有效肝素的解毒剂,而PS未能逆转LMWhs和Fondaparinux的抗凝作用,并与人类血液等竞争性介质中的蛋白质结合。我们假设UHRA中MPEG链的存在,密度和长度至关重要,以实现最大疗效和最小毒性。在这项研究中,我们使用ITC与PS相比,展示UHRA的结构优势。方法:通过缩水甘油和MPEG的阴离子开环聚合合成UHRA,用多官能叔胺后改性以产生阳离子基团。我们合成UHRA没有MPEG链(N-UHRA),以评估其在UHRA设计中的至关重要。 ITC实验在VP-ITC微量高压仪上进行。我们以不同的盐浓度滴定UHRA,N-UHRA和PS对抗UFH。激活的部分血栓形成蛋白时间测定时间测定(APTT)分别在人血小板差(PPP)和抗凝人PPP中进行,以评估解毒剂的生物相容性和中和能力。结果与讨论:预期,通过增加缓冲溶液中的盐含量增加,解毒剂对UFH的结合亲和力降低。德义 - 哈奇的关联常数与盐浓度对N-UHRA和PS的线性关系显示。然而,在UFH和UHRA之间的结合中观察到与Debye-Huckel图(非线性)的偏差。 UHRA对UFH的结合是焓驱动,但是MPEG链的存在作为熵泵送,随着与N-UHRA或PROTAMINE提供所需的选择性的盐浓度增加,随着盐浓度的增加而迅速降低结合亲和力。我们观察到,UHRA对UFH的结合亲和力随温度的增加而降低,复杂的形成变得更加放热。焓 - 熵补偿图的线性,斜率接近1.0显示熵焓的精确补偿。与N-UHRA和PS相比,UHRA表现出的内在抗凝效应温和。此外,UHRA完全从12.5μg/ ml至200μg/ ml的宽浓度完全中和UFH抗凝血。另一方面,protamine和N-UHRA未能完全反转UFH的抗凝作用,并显示出100μg/ ml以上的抗凝血效果。结论:N-UHRA和PS对血浆蛋白的非特异性相互作用可能对其内在抗凝物负责。该研究表明,MPEG刷层(熵屏障)可以减少UHRA与血浆蛋白的相互作用,并提供结合的选择性。然而,UHRA的熵屏障在高度阴离子存在下淹没,如肝素的高度阴离子,使UHRA成为理想的肝素解毒剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号